Computational Science Hub (CSH)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16924
Browse
Recent Submissions
Publication Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape(2021) Krupitzer, Christian; Stein, AnthonyBackground: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.Publication CortexVR: Immersive analysis and training of cognitive executive functions of soccer players using virtual reality and machine learning(2022) Krupitzer, Christian; Naber, Jens; Stauffert, Jan-Philipp; Mayer, Jan; Spielmann, Jan; Ehmann, Paul; Boci, Noel; Bürkle, Maurice; Ho, André; Komorek, Clemens; Heinickel, Felix; Kounev, Samuel; Becker, Christian; Latoschik, Marc ErichGoal: This paper presents an immersive Virtual Reality (VR) system to analyze and train Executive Functions (EFs) of soccer players. EFs are important cognitive functions for athletes. They are a relevant quality that distinguishes amateurs from professionals. Method: The system is based on immersive technology, hence, the user interacts naturally and experiences a training session in a virtual world. The proposed system has a modular design supporting the extension of various so-called game modes. Game modes combine selected game mechanics with specific simulation content to target particular training aspects. The system architecture decouples selection/parameterization and analysis of training sessions via a coaching app from an Unity3D-based VR simulation core. Monitoring of user performance and progress is recorded by a database that sends the necessary feedback to the coaching app for analysis. Results: The system is tested for VR-critical performance criteria to reveal the usefulness of a new interaction paradigm in the cognitive training and analysis of EFs. Subjective ratings for overall usability show that the design as VR application enhances the user experience compared to a traditional desktop app; whereas the new, unfamiliar interaction paradigm does not negatively impact the effort for using the application. Conclusion: The system can provide immersive training of EF in a fully virtual environment, eliminating potential distraction. It further provides an easy-to-use analyzes tool to compare user but also an automatic, adaptive training mode.