Browsing by Subject "Lettuce-medium"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Vergleichende Transkriptomanalyse und funktionelle Untersuchungen von enterohämorrhagischen Escherichia coli nach Kultivierung in Pflanzenmedium(2020) Bufe, Thorsten; Schmidt, HerbertEnterohemorrhagic Escherichia coli (EHEC) are human pathogens which are able to cause severe gastrointestinal diseases in humans. The gastrointestinal tract of cattle is considered as the main reservoir for EHEC and contaminated raw meat represents the primary source of infection. Yet there have been increasing reports over the last few decades of EHEC infections that were linked to the consumption of raw vegetables. Today it is generally accepted that EHEC bacteria are able to use plants as their secondary hosts, thus favouring the transmission to humans. To improve the understanding of this pathogen-plant interaction fundamental knowledge about the pathogens’ molecular adaptions towards plant material is urgently required. In the cope of this study the adaption of different EHEC strains towards components of the plant was examined. Therefore O157:H7 strain Sakai, O104:H4 strain C227-11phicu and O157:H strain 3072/96 were chosen as surrogates. In growth experiments performed with an artificial lettuce medium it could be shown that components of the lettuce were sufficient for the proliferation of the three strains. RNA-sequencing was performed to study the differential gene expression of the three strains after the growth in lettuce medium compared to the growth in M9 minimal medium. In order to compare genes according to standardized gene denotations, the differential gene expression analysis was performed on the basis of a shared genome including the genomes of the three pathogenic strains as well as the genome of Escherichia coli strain K-12 substrain MG1655. Analogous to the successful growth in presence of components of the plant an upregulation of genes involved in carbohydrate and peptide metabolism throughout all three strains was observed. Especially genes involved in the catabolism of lactose (lacZ), ribose (rbsAC) and xylose (xylF) were found to be uniformly upregulated. The greatest differences among the strains accounted for the regulation of motility and chemotaxis genes. O104:H4 strain C227-11phicu showed a strong upregulation of all three classes of the flagellar hierarchy (class I, II and III) in presence of plant derived compounds. These included genes involved in the establishment of the basal body hook structure (fli, flg), the synthesis of the flagellar filament (fliC), and the chemotaxis-system (che, tap, tar). In contrast, O157:H7 strain Sakai only featured upregulation of class I and class II genes. According to the transcriptional data both of these strains also showed increased swimming and swarming behaviour on motility plates in presence of lettuce extract. Solely O157:H- strain 3072/96, which is non-motile due to a deletion in the flhC gene, showed an upregulation of virulence factors encoded on the LEE pathogenicity island, including genes involved in the establishment of the T3SS (esc) and T3SS secreted effectors (esp). Interestingly, it was shown for O157:H- strain 3072/96 to have a powerful capacity to form biofilms in M9 minimal medium. Furthermore it was proven that the complementation of an intact flhC gene restored motility in O157:H- strain 3072/96. In this regard it could be shown that the deletion in flhC was not the mere reason for the augmented biofilm formation capacity. In addition to the biofilm formation, the strains’ potential to adhere to HT-29 cells was examined. Here a significantly increased adherence potential for O157:H- strain 3072/96 with respect to the motile strains could be observed, the lowest adherence potential was determined for O157:H7 strain Sakai. The results presented in this study clearly indicate that the different EHEC strains are capable to adapt towards the nutrient availability provided by their plantal host. It can be assumed that flagella and the chemotaxis system play a fundamental role in the finding and exploitation of the plant. Furthermore curli structures might play a crucial role in the initial adherence and the subsequent establishment of a biofilm on plant tissues. Presumably, besides the typical plant associated outbreak strain O157:H7 strain Sakai, there are further strains capable of utilizing their genetic repertoire in order to adapt towards the atypical environmental conditions within this niche. The findings of this study suggest that the strains, besides sharing multiple coinciding mechanisms, are able to adapt in a strain specific manner and use different strategies in coping with plants as their secondary hosts.