Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Moradtalab, Narges"

Type the first few letters and click on the Browse button
Now showing 1 - 8 of 8
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Combination of silicate-based soil conditioners with plant growth-promoting microorganisms to improve drought stress resilience in potato
    (2024) Mamun, Abdullah Al; Neumann, Günter; Moradtalab, Narges; Ahmed, Aneesh; Nawaz, Fahim; Tenbohlen, Timotheus; Feng, Jingyu; Zhang, Yongbin; Xie, Xiaochan; Zhifang, Li; Ludewig, Uwe; Bradáčová, Klára; Weinmann, Markus; Mamun, Abdullah Al; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Neumann, Günter; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Moradtalab, Narges; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Ahmed, Aneesh; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Nawaz, Fahim; Research School of Biology, Australian National University, Canberra 2901, Australia;; Tenbohlen, Timotheus; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Feng, Jingyu; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.); Zhang, Yongbin; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.); Xie, Xiaochan; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.); Zhifang, Li; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.); Ludewig, Uwe; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Bradáčová, Klára; Department of Fertilization and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;; Weinmann, Markus; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.); Li, Huixin
    Due to shallow root systems, potato is a particularly drought-sensitive crop. To counteract these limitations, the application of plant growth-promoting microorganisms (PGPMs) is discussed as a strategy to improve nutrient acquisition and biotic and abiotic stress resilience. However, initial root colonization by PGPMs, in particular, can be affected by stress factors that negatively impact root growth and activity or the survival of PGPMs in the rhizosphere. In this study, perspectives for the use of commercial silicate-based soil conditioners (SCs) supposed to improve soil water retention were investigated. The SC products were based on combinations with lignocellulose polysaccharides (Sanoplant® = SP) or polyacrylate (Geohumus® = GH). It was hypothesized that SC applications would support beneficial plant–inoculant interactions (arbuscular mycorrhiza, AM: Rhizophagus irregularis MUCL41833, and Pseudomonas brassicacearum 3Re2-7) on a silty loam soil–sand mixture under water-deficit conditions (6–12 weeks at 15–20% substrate water-holding capacity, WHC). Although no significant SC effects on WHC and total plant biomass were detectable, the SC-inoculant combinations increased the proportion of leaf biomass not affected by drought stress symptoms (chlorosis, necrosis) by 66% (SP) and 91% (GH). Accordingly, osmotic adjustment (proline, glycine betaine accumulation) and ROS detoxification (ascorbate peroxidase, total antioxidants) were increased. This was associated with elevated levels of phytohormones involved in stress adaptations (abscisic, jasmonic, salicylic acids, IAA) and reduced ROS (H2O2) accumulation in the leaf tissue. In contrast to GH, the SP treatments additionally stimulated AM root colonization. Finally, the SP-inoculant combination significantly increased tuber biomass (82%) under well-watered conditions, and a similar trend was observed under drought stress, reaching 81% of the well-watered control. The P status was sufficient for all treatments, and no treatment differences were observed for stress-protective nutrients, such as Zn, Mn, or Si. By contrast, GH treatments had negative effects on tuber biomass, associated with excess accumulation of Mn and Fe in the leaf tissue close to toxicity levels. The findings suggest that inoculation with the PGPMs in combination with SC products (SP) can promote physiological stress adaptations and AM colonization to improve potato tuber yield, independent of effects on soil water retention. However, this does not apply to SC products in general.
  • Loading...
    Thumbnail Image
    Publication
    Effect of long-term agricultural management on the soil microbiota influenced by the time of soil sampling
    (2022) Fernandez-Gnecco, Gabriela; Covacevich, Fernanda; Consolo, Veronica F.; Behr, Jan H.; Sommermann, Loreen; Moradtalab, Narges; Maccario, Lorrie; Sørensen, Søren J.; Deubel, Annette; Schellenberg, Ingo; Geistlinger, Joerg; Neumann, Günter; Grosch, Rita; Smalla, Kornelia; Babin, Doreen
    Application of agrochemicals and mechanization enabled increasing agricultural productivity yet caused various environmental and soil health-related problems. Agricultural practices affect soil microorganisms, which are the key players of many ecosystem processes. However, less is known about whether this effect differs between time points. Therefore, soil was sampled in winter (without crop) and in summer (in the presence of maize) from a long-term field experiment (LTE) in Bernburg (Germany) managed either under cultivator tillage (CT) or moldboard plow (MP) in combination with either intensive nitrogen (N)-fertilization and pesticides (Int) or extensive reduced N-fertilization without fungicides (Ext), respectively. High-throughput sequencing of 16S rRNA gene and fungal ITS2 amplicons showed that changes in the microbial community composition were correlated to differences in soil chemical properties caused by tillage practice. Microbial communities of soils sampled in winter differed only depending on the tillage practice while, in summer, also a strong effect of the fertilization intensity was observed. A small proportion of microbial taxa was shared between soils from the two sampling times, suggesting the existence of a stable core microbiota at the LTE. In general, taxa associated with organic matter decomposition (such as Actinobacteria, Bacteroidetes, Rhizopus, and Exophiala) had a higher relative abundance under CT. Among the taxa with significant changes in relative abundances due to different long-term agricultural practices were putative pathogenic (e.g., Gibellulopsis and Gibberella) and beneficial microbial genera (e.g., Chitinophagaceae, Ferruginibacter, and Minimedusa). In summary, this study suggests that the effects of long-term agricultural management practices on the soil microbiota are influenced by the soil sampling time, and this needs to be kept in mind in future studies for the interpretation of field data.
  • Loading...
    Thumbnail Image
    Publication
    Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis
    (2024) Nkebiwe, Peteh Mehdi; Stevens Lekfeldt, Jonas D.; Symanczik, Sarah; Thonar, Cécile; Mäder, Paul; Bar-Tal, Asher; Halpern, Moshe; Biró, Borbala; Bradáčová, Klára; Caniullan, Pedro C.; Choudhary, Krishna K.; Cozzolino, Vincenza; Di Stasio, Emilio; Dobczinski, Stefan; Geistlinger, Joerg; Lüthi, Angelika; Gómez-Muñoz, Beatriz; Kandeler, Ellen; Kolberg, Flora; Kotroczó, Zsolt; Kulhanek, Martin; Mercl, Filip; Tamir, Guy; Moradtalab, Narges; Piccolo, Alessandro; Maggio, Albino; Nassal, Dinah; Szalai, Magdolna Zita; Juhos, Katalin; Fora, Ciprian G.; Florea, Andreea; Poşta, Gheorghe; Lauer, Karl Fritz; Toth, Brigitta; Tlustoš, Pavel; Mpanga, Isaac K.; Weber, Nino; Weinmann, Markus; Yermiyahu, Uri; Magid, Jakob; Müller, Torsten; Neumann, Günter; Ludewig, Uwe; de Neergaard, Andreas
    Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.
  • Loading...
    Thumbnail Image
    Publication
    Loss of LaMATE impairs isoflavonoid release from cluster roots of phosphorus‐deficient white lupin
    (2021) Zhou, Yaping; Olt, Philipp; Neuhäuser, Benjamin; Moradtalab, Narges; Bautista, William; Uhde‐Stone, Claudia; Neumann, Günter; Ludewig, Uwe
    White lupin (Lupinus albus L.) forms brush‐like root structures called cluster roots under phosphorus‐deficient conditions. Clusters secrete citrate and other organic compounds to mobilize sparingly soluble soil phosphates. In the context of aluminum toxicity tolerance mechanisms in other species, citrate is released via a subgroup of MATE/DTX proteins (multidrug and toxic compound extrusion/detoxification). White lupin contains 56 MATE/DTX genes. Many of these are closely related to gene orthologs with known substrates in other species. LaMATE is a marker gene for functional, mature clusters and is, together with its close homolog LaMATE3, a candidate for the citrate release. Both were highest expressed in mature clusters and when expressed in oocytes, induced inward‐rectifying currents that were likely carried by endogenous channels. No citrate efflux was associated with LaMATE and LaMATE3 expression in oocytes. Furthermore, citrate secretion was largely unaffected in P‐deficient composite mutant plants with genome‐edited or RNAi‐silenced LaMATE in roots. Moderately lower concentrations of citrate and malate in the root tissue and consequently less organic acid anion secretion and lower malate in the xylem sap were identified. Interestingly, however, less genistein was consistently found in mutant exudates, opening the possibility that LaMATE is involved in isoflavonoid release.
  • Loading...
    Thumbnail Image
    Publication
    Microbial consortia versus single-strain inoculants as drought stress protectants in potato affected by the form of N supply
    (2024) Mamun, Abdullah Al; Neumann, Günter; Moradtalab, Narges; Ahmed, Aneesh; Dupuis, Brice; Darbon, Geoffrey; Nawaz, Fahim; Declerck, Stephane; Mai, Karin; Vogt, Wolfgang; Ludewig, Uwe; Weinmann, Markus
    This study investigated the drought protection effects of six fungal and bacterial inoculants and ten consortia thereof on vegetative growth, nutritional status, and tuberization of potato under controlled and field conditions. It was hypothesized that microbial consortia offer improved drought protection as compared with single strains, due to complementary or synergistic effects, with differential impacts also of N fertilization management. Under NO3− fertilization, a 70% reduction in water supply over six weeks reduced shoot and tuber biomass of non-inoculated plants by 30% and 50%, respectively, and induced phosphate (P) limitation compared to the well-watered control. The P nutritional status was significantly increased above the deficiency threshold by three single-strain inoculants and eight consortia. This was associated with the presence of the arbuscular mycorrhizal fungus (AMF) inoculant Rhizophagus irregularis MUCL41833 (five cases) and stimulation of root growth (five cases). Additionally, Bacillus amyloliquefaciens FZB42 and AMF + Pseudomonas brassicacearum 3Re2-7 significantly reduced irreversible drought-induced leaf damage after recovery to well-watered conditions. However, the microbial inoculants did not mitigate drought-induced reductions in tuber biomass, neither in greenhouse nor in field experiments. By contrast, NH4+-dominated fertilization significantly increased tuber biomass under drought stress (534%), which was further increased by additional AMF inoculation (951%). This coincided with (i) improved enzymatic detoxification of drought-induced reactive oxygen species (ROS), (ii) improved osmotic adjustment in the shoot tissue (glycine betaine accumulation), (iii) increased shoot concentrations of ABA, jasmonic acid, and indole acetic acid, involved in drought stress signaling and tuberization, and (iv) reduced irreversible drought-induced leaf damage. Additional application of bacterial inoculants further improved ROS detoxification by increasing the production of antioxidants but stimulated biomass allocation towards shoot growth at the expense of tuber development. The results demonstrated that microbial consortia could increase the probability of drought protection effects influenced by the form of N supply. However, protective effects on vegetative growth do not necessarily translate into yield benefits, which can be achieved by adequate combination of inoculants and fertilizers.
  • Loading...
    Thumbnail Image
    Publication
    Microbial inoculants modulate the rhizosphere microbiome, alleviate plant stress responses, and enhance maize growth at field scale
    (2025) Francioli, Davide; Kampouris, Ioannis D.; Kuhl-Nagel, Theresa; Babin, Doreen; Sommermann, Loreen; Behr, Jan H.; Chowdhury, Soumitra Paul; Zrenner, Rita; Moradtalab, Narges; Schloter, Michael; Geistlinger, Joerg; Ludewig, Uwe; Neumann, Günter; Smalla, Kornelia; Grosch, Rita; Francioli, Davide; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Kampouris, Ioannis D.; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Kuhl-Nagel, Theresa; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Babin, Doreen; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Sommermann, Loreen; Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany; Behr, Jan H.; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Chowdhury, Soumitra Paul; Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany; Zrenner, Rita; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Moradtalab, Narges; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Schloter, Michael; Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany; Geistlinger, Joerg; Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany; Ludewig, Uwe; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Neumann, Günter; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Smalla, Kornelia; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Grosch, Rita; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
    Background: Field inoculation of crops with beneficial microbes is a promising sustainable strategy to enhance plant fitness and nutrient acquisition. However, effectiveness can vary due to environmental factors, microbial competition, and methodological challenges, while their precise modes of action remain uncertain. This underscores the need for further research to optimize inoculation strategies for consistent agricultural benefits. Results: Using a comprehensive, multidisciplinary approach, we investigate the effects of a consortium of beneficial microbes (BMc) ( Pseudomonas sp. RU47, Bacillus atrophaeus ABi03, Trichoderma harzianum OMG16) on maize ( Zea mays cv. Benedictio) through an inoculation experiment conducted within a long-term field trial across intensive and extensive farming practices. Additionally, an unexpected early drought stress emerged as a climatic variable, offering further insight into the effectiveness of the microbial consortium. Our findings demonstrate that BMc root inoculation primarily enhanced plant growth and fitness, particularly by increasing iron uptake, which is crucial for drought adaptation. Inoculated maize plants show improved shoot growth and fitness compared to non-inoculated plants, regardless of farming practices. Specifically, BMc modulate plant hormonal balance, enhance the detoxification of reactive oxygen species, and increase root exudation of iron-chelating metabolites. Amplicon sequencing reveals shifts in rhizosphere bacterial and fungal communities mediated by the consortium. Metagenomic shotgun sequencing indicates enrichment of genes related to antimicrobial lipopeptides and siderophores. Conclusions: Our findings highlight the multifaceted benefits of BMc inoculation on plant fitness, significantly influencing metabolism, stress responses, and the rhizosphere microbiome. These improvements are crucial for advancing sustainable agricultural practices by enhancing plant resilience and productivity.
  • Loading...
    Thumbnail Image
    Publication
    Micronutrients, silicon and biostimulants as cold stress protectants in maize
    (2020) Moradtalab, Narges; Streck, Thilo
    Mitigation of abiotic stress in crops is a feature attributed to various so-called biostimulants based on plant growth-promoting microorganisms (PGPMs) plant-, compost- and seaweed extracts, protein hydrolylates, chitosan derivatives etc. but also to mineral nutrients with protective functions, such as zinc (Zn), manganese (Mn), boron (B), calcium (Ca) and silicon (Si), recommended as stress protectants in commercial formulations. This study focussed on the effects of selected biostimulants on cold stress mitigation during early growth in maize, as a major stress factor for cultivation of tropical and subtropical crops in temperate climates. Chilling stress and micronutrient supplementation Chilling stress, induced by moderately low soil temperatures (8-14°C) in a controlled root cooling system, was associated with inhibition of shoot growth, oxidative leaf damage (chlorosis, necrosis accumulation of stress anthocyanins) and a massive decline in root length (Chapter 4 and 5). Due to inhibition of root growth, nutrient acquisition in general was impaired. However, nutrient deficiencies were recorded particularly for the micronutrients zinc (Zn) and manganese (Mn). The impaired Zn and Mn status was obviously related with the observed limitations in plant performance, which were reverted by exogenous Zn and Mn supplementation (0.5 mg plant-1), finally leading to restored nutrient acquisition and improved plant recovery after termination of the cold stress period. Zinc and manganese deficiency was mainly related with impaired uptake of the micronutrients, since the cold stress-induced deficiency symptoms persisted even in hydroponic culture when all nutrients were freely available. Beneficial effects of Zn/Mn supplementation were only detectable when the micronutrients were supplied prior to the onset of the stress period via seed soaking, seed dressing or fertigation, when uptake and internal translocation was still possible. A transcriptome analysis of the shoot tissue (Chapter 5) revealed 1400 differentially expressed transcripts (DETs) after 7-days exposure of maize seedlings to chilling stress of 12°C, mostly associated with down-regulation of selected functional categories (BINs), related with photosynthesis, synthesis of amino acids, lipids and cell wall precursors, transport of mineral nutrients (N, P, K,), metal handling and synthesis of growth hormones (auxins, gibberellic acid) but also of jasmonic (JA) and salicylic acids (SA) involved in stress adaptations. In accordance with the impaired micronutrient status and oxidative leaf damage in response to the cold stress treatments, downregulation was also recorded for transcripts related with oxidative stress defence (superoxide dismutases SOD, catalase, peroxidases POD, synthesis of phenylpropanoids and lignification), particularly dependent on the supply of micronutrients as co-factors. Upregulation was recorded for BINs related with degradation of lipids, of cell wall precursors, synthesis of waxes and certain flavonoids and of stress hormones, such as abscisic acid (ABA) and ethylene but degradation of growth-promoting cytokinins (CK). Accordingly, supplementation of Zn and Mn increased the accumulation of anthocyanins and antioxidants, the activities of superoxide dismutase and peroxidases, associated with reduced ROS accumulation (H2O2), mitigation of oxidative leaf damage and improved plant recovery at the end of the cold stress period (Chapter 5 and 6). Effects of seaweed extracts Cold-protective properties similar to Zn/Mn supplementation, associated with an improved Zn/Mn-nutritional status and reduced oxidative damage, were recorded also after fertigation with seaweed extracts prior to the onset of the stress treatments (Chapter 4). However, this effect was detectable only with seaweed extract formulations rich in Zn/Mn (Algavyt+Zn/Mn; Algafect; 6-70 mg kg DM-1) but not with a more highly purified formulation (Superfifty) without detectable micronutrient contents. This finding suggests that the cold-protective effect by soil application of seaweed extracts is based on an improved micronutrient supply and not to an elicitor effect, frequently reported in the literature for stress-protective functions after foliar application of seaweed extracts. Silicon fertilization Similar to seaweed extracts, also silicon (Si), applied by seed soaking or fertigation with silicic acid, mimicked the cold-protective effects of Zn/Mn supplementation in maize seedlings (Chapter 5). The Zn/Mn status of the Si-treated plants was improved although, in this case no additional micronutrient supply was involved. However, Si application significantly reduced leaching losses of Zn/and Mn by 50-70%, as a consequence of cold stress-induced membrane damage in germinating maize seeds and favoured the root to shoot translocation of Zn. This was associated with a restoration of gene expression, similar to the profiles recorded for unstressed control plants. However, the expression of genes related with synthesis and signal transduction of ABA, as central regulator of adaptive cold stress responses in plants, was even more strongly upregulated than in the cold-stressed controls. Accordingly, expression of cold stress adaptations involved in oxidative stress defence (SOD, peroxidases, phenolics, antioxidants) and the reduction of oxidative leaf damage and improved plant recovery were similar to the plants with Zn/Mn supplementation. Plant growth promoting microorganisms Cold-protective functions were recorded also for selected microbial inoculants (Chapter 6). However, out of five tested inoculant formulations, based on strains of Pseudomonas sp., DSMZ13134, Bacillus amyloliquefaciens FZB42, Bacillus atrophaeus ABI05, Penicillium sp. PK112 (BFOD) and a consortium of Trichoderma harzianum OMG16 and five Bacillus strains (Combi-A), a significant protective effect was detectable only for Penicillium sp. and particularly for CombiA. The CombiA consortium significantly increased root length and reduced oxidative leaf damage of cold-stressed plants, associated with increased SOD and POD activities and accumulation of phenolics and antioxidants. Root growth stimulation was related with increased IAA (indole acetic acid) tissue contents and increased expression of genes involved in IAA biosynthesis (ZmTSA) transport (ZmPIN1A) and perception (ZmAFR12). The tissue concentrations of ABA were not affected by the microbial inoculants, but the shoot concentrations of JA and SA increased, suggesting an effect by induced systemic resistance (ISR). Moreover, root concentrations of cytokinins (CKs) as ABA antagonists and expression of IPT genes involved in CK biosynthesis declined, leading to an increased ABA/cytokinin ratio and accordingly to increased expression of ABA responsive genes (ZmABF2). These findings suggest that CombiA mainly acted via improvement of root growth and nutrient acquisition by activation of the plant auxin metabolism and activation of cold protective metabolic responses by induction of ISR via JA/SA signalling and ABA-mediated responses, due to inhibition of CK biosynthesis. Synergistic interactions While the different cold-stress protectants investigated in this study induced similar protective plant responses, synergistic effects were obtained by combined applications (Chapter 6). The combination of CombiA inoculation with Zn/Mn supplementation further increased the plant micronutrient status and the cold-protective effects of CombiA. For all treatments, generally the expression of cold-protective effects was further improved by use of DMPP-stabilized ammonium fertilizers instead of nitrate fertilization. Ammonium fertilization promoted micronutrient acquisition via root-induced rhizosphere acidification, increased the ABA shoot concentrations with a moderate activation of metabolic cold stress responses and stimulated root colonization of Trichoderma harzianum OMG16 (CombiA). Field performance A comparative evaluation of the various cold protectants under field conditions with stabilized ammonium starter fertilization, revealed a severely reduced seedling emergence at six weeks after sowing (44%) due to extremely cold and wet soil conditions by the end of April in 2016, associated with a low Zn-nutritional status (32 mg kg-1 shoot DM). Significant improvements were recorded particularly for starter treatments including Zn/Mn seed dressing (emergence 56%) or seed priming with K2SiO4 (emergence 72%) and also by inoculation with the fungal PGPM strain Penicillium sp. BFOD (emergence 49%) associated with a doubling of the Zn tissue concentrations. Even after re-sowing, a significant yield increase for silo maize was recorded exclusively for the K2SiO4 treatment (Chapter 5). Taken together, the findings suggest that exploitation of synergistic interactions by combined starter applications of protective nutrients with selected biostimulants, could offer a cost-effective option for cold-stress prophylaxis in sensitive crops.
  • Loading...
    Thumbnail Image
    Publication
    Role of benzoic acid and lettucenin A in the defense response of lettuce against soil-borne pathogens
    (2021) Windisch, Saskia; Walter, Anja; Moradtalab, Narges; Walker, Frank; Höglinger, Birgit; El-Hasan, Abbas; Ludewig, Uwe; Neumann, Günter; Grosch, Rita
    Soil-borne pathogens can severely limit plant productivity. Induced defense responses are plant strategies to counteract pathogen-related damage and yield loss. In this study, we hypothesized that benzoic acid and lettucenin A are involved as defense compounds against Rhizoctonia solani and Olpidium virulentus in lettuce. To address this hypothesis, we conducted growth chamber experiments using hydroponics, peat culture substrate and soil culture in pots and minirhizotrons. Benzoic acid was identified as root exudate released from lettuce plants upon pathogen infection, with pre-accumulation of benzoic acid esters in the root tissue. The amounts were sufficient to inhibit hyphal growth of R. solani in vitro (30%), to mitigate growth retardation (51%) and damage of fine roots (130%) in lettuce plants caused by R. solani, but were not able to overcome plant growth suppression induced by Olpidium infection. Additionally, lettucenin A was identified as major phytoalexin, with local accumulation in affected plant tissues upon infection with pathogens or chemical elicitation (CuSO4) and detected in trace amounts in root exudates. The results suggest a two-stage defense mechanism with pathogen-induced benzoic acid exudation initially located in the rhizosphere followed by accumulation of lettucenin A locally restricted to affected root and leaf tissues.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy