Bitte beachten Sie: Im Zeitraum vom 21.12.2024 bis zum 07.01.2025 werden auf hohPublica keine Anfragen oder Publikationen durch das KIM bearbeitet. Please note: KIM will not process any requests or publications on hohPublica between December 21, 2024 and January 7, 2025.
 

Simulating knowledge diffusion in four structurally distinct networks : an agent-based simulation model

dc.contributor.authorKudic, Muhamedde
dc.contributor.authorMueller, Matthiasde
dc.contributor.authorBogner, Kristinade
dc.contributor.authorBuchmann, Tobiasde
dc.date.accessioned2024-04-08T08:51:31Z
dc.date.available2024-04-08T08:51:31Z
dc.date.created2015-07-23
dc.date.issued2015
dc.description.abstractIn our work we adopt a structural perspective and apply an agent-based simulation approach to analyse knowledge diffusion processes in four structurally distinct networks. The aim of this paper is to gain an in-depth understanding of how network characteristics, such as path length, cliquishness and the distribution and asymmetry of degree centrality affect the knowledge distribution properties of the system. Our results show – in line with the results of Cowan and Jonard (2007) – that an asymmetric or skewed degree distribution actually can have a negative impact on a network’s knowledge diffusion performance in case of a barter trade knowledge diffusion process. Their key argument is that stars rapidly acquire so much knowledge that they interrupt the trading process at an early stage, which finally disconnects the network. However, our findings reveal that stars cannot be the sole explanation for negative effects on the diffusion properties of a network. In contrast, interestingly and quite surprisingly, our simulation results led to the conclusion that in particular very small, inadequately embedded agents can be a bottleneck for the efficient diffusion of knowledge throughout the networks.en
dc.identifier.swb442201192
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/5927
dc.identifier.urnurn:nbn:de:bsz:100-opus-11016
dc.language.isoeng
dc.relation.ispartofseriesHohenheim discussion papers in business, economics and social sciences; 2015,05
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectInnovation networken
dc.subjectKnowledge diffusionen
dc.subjectAgent-based simulationen
dc.subjectScale free networken
dc.subject.ddc330
dc.subject.gndNetzwerkde
dc.subject.gndSimulationde
dc.subject.gndWissende
dc.titleSimulating knowledge diffusion in four structurally distinct networks : an agent-based simulation modelde
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Kudic2015, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/5927}, author = {Kudic, Muhamed and Mueller, Matthias and Bogner, Kristina et al.}, title = {Simulating knowledge diffusion in four structurally distinct networks : an agent-based simulation model}, year = {2015}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, }
local.export.bibtexAuthorKudic, Muhamed and Mueller, Matthias and Bogner, Kristina et al.
local.export.bibtexKeyKudic2015
local.export.bibtexType@techreport
local.faculty.number3de
local.institute.number520de
local.opus.number1101
local.series.issueNumber2015,05
local.series.titleHohenheim discussion papers in business, economics and social sciences
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dp_05_2015_online.pdf
Size:
632.54 KB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext