Bitte beachten Sie: Im Zeitraum vom 21.12.2024 bis zum 07.01.2025 werden auf hohPublica keine Anfragen oder Publikationen durch das KIM bearbeitet. Please note: KIM will not process any requests or publications on hohPublica between December 21, 2024 and January 7, 2025.
 

Consumer prices : effects of learning algorithms and pandemic-related policy measures

dc.contributor.advisorSchwalbe, Ulrichde
dc.contributor.authorBuchali, Katrinde
dc.date.accepted2023-02-14
dc.date.accessioned2024-04-08T09:04:11Z
dc.date.available2024-04-08T09:04:11Z
dc.date.created2023-07-05
dc.date.issued2023
dc.description.abstractWhen it comes to product prices, two major topics have dominated the public debate in recent years: One is pricing with the help of artificial intelligence, and the other is the price level, which has risen more than usual with the onset of the COVID-19 pandemic. Higher prices create a loss of consumer surplus and possibly total welfare, which is the reason this topic has become ubiquitous in political discussions. This dissertation contributes to the debate by extending the existing literature on algorithmic pricing, which is said to facilitate personalized pricing, as well as collusive behavior and to enhance the general understanding of how government measures enforced during the COVID-19 pandemic contributed to (short-time) price developments. Thereby, the first part of the thesis addresses the concern that tacit collusion might occur if firms employ learning algorithms, as several simulation studies have demonstrated that algorithms using reinforcement learning are able to coordinate their pricing behavior and, as a result, achieve a collusive outcome without having been programmed for it. We discuss several conceptual challenges as well as challenges in the real-world application of algorithms and show by or own simulations that resulting market prices strongly depend on the type of algorithm or heuristic that is used by the firms to set prices. In the subsequent part of the thesis we examine how a self-learning pricing algorithm performs when faced with inequity-averse consumers. From our simulations we can conclude that consumers sense of fairness, which have prevented firms from engaging in price discrimination in the past years, can be incorporated into firms pricing decisions with the help of learning algorithms, making differential pricing strategies more feasible. The discussion surrounding the above-average price levels in many countries during the COVID-19 pandemic is extended in the third part of the thesis. We present empirical evidence for the impact of government-imposed restrictions and, as a consequence of their enforcement, reduced mobility on consumer prices during the COVID-19 pandemic. We show that the stringency of government measures had a positive and significant impact on consumer prices mainly in the food sector, which means that more stringent measures induced higher consumer prices in these categories.en
dc.description.abstractBeim Thema Verbraucherpreise haben in den letzten Jahren vor allem zwei große Themen die öffentliche Debatte dominiert: Zum einen die Preisgestaltung mit Hilfe künstlicher Intelligenz und zum anderen das hohe Preisniveau, welches mit dem Ausbruch der COVID-19-Pandemie stärker als üblich angestiegen ist. Höhere Preise führen zu einem Verlust an Konsumentenrente und möglicherweise auch an Gesamtwohlfahrt, weshalb dieses Thema in der politischen Diskussion allgegenwärtig wurde. Die Dissertation leistet einen Beitrag zu dieser Debatte, indem sie die vorhandene Literatur zu algorithmischer Preisbildung erweitert, von der angenommen wird, dass sie eine personalisierte Preisbildung sowie kollusives Verhalten begünstigt, und indem sie das allgemeine Verständnis dafür verbessert, wie die während der COVID-19-Pandemie durchgesetzten staatlichen Maßnahmen zur (kurzfristigen) Preisentwicklung beigetragen haben. Der erste Teil der Arbeit befasst sich mit den Befürchtungen, dass es zu stillschweigenden Absprachen kommen könnte, wenn Unternehmen lernende Algorithmen einsetzen, da mehrere Simulationsstudien gezeigt haben, dass Algorithmen, die sogenanntes Reinforcement Learning einsetzen, in der Lage sind, ihr Preisverhalten zu koordinieren und infolgedessen ein kollusives Ergebnis zu erzielen, ohne dafür programmiert worden zu sein. Wir erörtern verschiedene konzeptionelle Herausforderungen sowie Hürden bei der realen Anwendung von Algorithmen und zeigen anhand eigener Simulationen, dass die resultierenden Marktpreise stark von der Art des Algorithmus oder der Heuristik abhängen, die von den Unternehmen zur Preisbildung verwendet wird. Im anschließenden Teil der Arbeit wird untersucht, wie sich ein selbstlernender Preisalgorithmus gegenüber ungleichheitsaversen Konsumenten verhält. Aus unseren Simulationen können wir schließen, dass das Fairnessempfinden der Verbraucher, das die Unternehmen in den vergangenen Jahren von Preisdiskriminierung abgehalten hat, mit Hilfe von lernenden Algorithmen in die Preisentscheidungen der Unternehmen einfließen kann, sodass differenzierte Preisstrategien wahrscheinlicher werden. Die Diskussion über das überdurchschnittliche Preisniveau in vielen Ländern während der COVID-19-Pandemie wird im dritten Teil der Dissertation vertieft. Es wird empirisch untersucht, inwieweit die Auswirkungen staatlich verordneter Beschränkungen und - als Folge ihrer Durchsetzung – die eingeschränkte Mobilität die Verbraucherpreise während der COVID-19-Pandemie beeinflusst haben. Es wird gezeigt, dass die Strenge der staatlichen Maßnahmen einen positiven und signifikanten Einfluss auf die Verbraucherpreise vor allem im Lebensmittelsektor hatten, was bedeutet, dass strengere Maßnahmen zu höheren Verbraucherpreisen in diesen Kategorien geführt haben.de
dc.identifier.swb1851788387
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6847
dc.identifier.urnurn:nbn:de:bsz:100-opus-21717
dc.language.isoeng
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectConsumer priceen
dc.subjectMachine learningen
dc.subjectCollusionen
dc.subjectPrice discriminationen
dc.subjectVerbraucherpreisede
dc.subjectKollusionde
dc.subject.ddc330
dc.subject.gndPreisdiskriminierungde
dc.subject.gndMaschinelles Lernende
dc.titleConsumer prices : effects of learning algorithms and pandemic-related policy measuresde
dc.title.dissertationVerbraucherpreise : Auswirkungen lernender Algorithmen und pandemiebedingter politischer Maßnahmende
dc.type.dcmiTextde
dc.type.diniDoctoralThesisde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@phdthesis{Buchali2023, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6847}, author = {Buchali, Katrin}, title = {Consumer prices : effects of learning algorithms and pandemic-related policy measures}, year = {2023}, school = {Universität Hohenheim}, }
local.export.bibtexAuthorBuchali, Katrin
local.export.bibtexKeyBuchali2023
local.export.bibtexType@phdthesis
local.faculty.number3de
local.institute.number520de
local.opus.number2171
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede
thesis.degree.levelthesis.doctoral

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Buchali.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext