Bitte beachten Sie: Im Zeitraum vom 21.12.2024 bis zum 07.01.2025 werden auf hohPublica keine Anfragen oder Publikationen durch das KIM bearbeitet. Please note: KIM will not process any requests or publications on hohPublica between December 21, 2024 and January 7, 2025.
 

Modelling and diagnostics of spatially autocorrelated counts

dc.contributor.authorJung, Robert C.
dc.contributor.authorGlaser, Stephanie
dc.date.accessioned2024-09-03T14:03:42Z
dc.date.available2024-09-03T14:03:42Z
dc.date.issued2022de
dc.description.abstractThis paper proposes a new spatial lag regression model which addresses global spatial autocorrelation arising from cross-sectional dependence between counts. Our approach offers an intuitive interpretation of the spatial correlation parameter as a measurement of the impact of neighbouring observations on the conditional expectation of the counts. It allows for flexible likelihood-based inference based on different distributional assumptions using standard numerical procedures. In addition, we advocate the use of data-coherent diagnostic tools in spatial count regression models. The application revisits a data set on the location choice of single unit start-up firms in the manufacturing industry in the US.en
dc.identifier.swb1817219561
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16563
dc.identifier.urihttps://doi.org/10.3390/econometrics10030031
dc.language.isoengde
dc.rights.licensecc_byde
dc.source2225-1146de
dc.sourceEconometrics; Vol. 10, No. 3 (2022) 31de
dc.subjectCount data models
dc.subjectSpatial econometrics
dc.subjectSpatial autocorrelation
dc.subjectFirm location choice
dc.subject.ddc510
dc.titleModelling and diagnostics of spatially autocorrelated countsen
dc.type.diniArticle
dcterms.bibliographicCitationEconometrics, 10 (2022), 3, 31. https://doi.org/10.3390/econometrics10030031. ISSN: 2225-1146
dcterms.bibliographicCitation.issn2225-1146
dcterms.bibliographicCitation.issue3
dcterms.bibliographicCitation.journaltitleEconometrics
dcterms.bibliographicCitation.volume10
local.export.bibtex@article{Jung2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16563}, doi = {10.3390/econometrics10030031}, author = {Jung, Robert C. and Glaser, Stephanie}, title = {Modelling and Diagnostics of Spatially Autocorrelated Counts}, journal = {Econometrics}, year = {2022}, volume = {10}, number = {3}, }
local.export.bibtexAuthorJung, Robert C. and Glaser, Stephanie
local.export.bibtexKeyJung2022
local.export.bibtexType@article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
econometrics-10-00031.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format