Proposal and extensive test of a calibration protocol for crop phenology models

dc.contributor.authorWallach, Daniel
dc.contributor.authorPalosuo, Taru
dc.contributor.authorThorburn, Peter
dc.contributor.authorMielenz, Henrike
dc.contributor.authorBuis, Samuel
dc.contributor.authorHochman, Zvi
dc.contributor.authorGourdain, Emmanuelle
dc.contributor.authorAndrianasolo, Fety
dc.contributor.authorDumont, Benjamin
dc.contributor.authorFerrise, Roberto
dc.contributor.authorGaiser, Thomas
dc.contributor.authorGarcia, Cecile
dc.contributor.authorGayler, Sebastian
dc.contributor.authorHarrison, Matthew
dc.contributor.authorHiremath, Santosh
dc.contributor.authorHoran, Heidi
dc.contributor.authorHoogenboom, Gerrit
dc.contributor.authorJansson, Per-Erik
dc.contributor.authorJing, Qi
dc.contributor.authorJustes, Eric
dc.contributor.authorKersebaum, Kurt-Christian
dc.contributor.authorLaunay, Marie
dc.contributor.authorLewan, Elisabet
dc.contributor.authorLiu, Ke
dc.contributor.authorMequanint, Fasil
dc.contributor.authorMoriondo, Marco
dc.contributor.authorNendel, Claas
dc.contributor.authorPadovan, Gloria
dc.contributor.authorQian, Budong
dc.contributor.authorSchütze, Niels
dc.contributor.authorSeserman, Diana-Maria
dc.contributor.authorShelia, Vakhtang
dc.contributor.authorSouissi, Amir
dc.contributor.authorSpecka, Xenia
dc.contributor.authorSrivastava, Amit Kumar
dc.contributor.authorTrombi, Giacomo
dc.contributor.authorWeber, Tobias K. D.
dc.contributor.authorWeihermüller, Lutz
dc.contributor.authorWöhling, Thomas
dc.contributor.authorSeidel, Sabine J.
dc.date.accessioned2024-12-20T08:43:10Z
dc.date.available2024-12-20T08:43:10Z
dc.date.issued2023
dc.date.updated2024-12-02T06:44:25Z
dc.description.abstractA major effect of environment on crops is through crop phenology, and therefore, the capacity to predict phenology for new environments is important. Mechanistic crop models are a major tool for such predictions, but calibration of crop phenology models is difficult and there is no consensus on the best approach. We propose an original, detailed approach for calibration of such models, which we refer to as a calibration protocol. The protocol covers all the steps in the calibration workflow, namely choice of default parameter values, choice of objective function, choice of parameters to estimate from the data, calculation of optimal parameter values, and diagnostics. The major innovation is in the choice of which parameters to estimate from the data, which combines expert knowledge and data-based model selection. First, almost additive parameters are identified and estimated. This should make bias (average difference between observed and simulated values) nearly zero. These are “obligatory” parameters, that will definitely be estimated. Then candidate parameters are identified, which are parameters likely to explain the remaining discrepancies between simulated and observed values. A candidate is only added to the list of parameters to estimate if it leads to a reduction in BIC (Bayesian Information Criterion), which is a model selection criterion. A second original aspect of the protocol is the specification of documentation for each stage of the protocol. The protocol was applied by 19 modeling teams to three data sets for wheat phenology. All teams first calibrated their model using their “usual” calibration approach, so it was possible to compare usual and protocol calibration. Evaluation of prediction error was based on data from sites and years not represented in the training data. Compared to usual calibration, calibration following the new protocol reduced the variability between modeling teams by 22% and reduced prediction error by 11%.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.description.sponsorshipAcademy of Finland
dc.description.sponsorshipRheinische Friedrich-Wilhelms-Universität Bonn (1040)
dc.identifier.swb1854268155
dc.identifier.urihttps://doi.org/10.1007/s13593-023-00900-0
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/17055
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectCrop model
dc.subjectPrediction error
dc.subjectProtocol
dc.subjectModel ensemble
dc.subjectVariability
dc.subjectMathematical Sciences
dc.subject.ddc630
dc.titleProposal and extensive test of a calibration protocol for crop phenology modelsen
dc.type.diniArticle
dcterms.bibliographicCitationAgronomy for sustainable development, 43 (2023), 4. https://doi.org/10.1007/s13593-023-00900-0. ISSN: 1773-0155
dcterms.bibliographicCitation.issn1773-0155
dcterms.bibliographicCitation.issue4
dcterms.bibliographicCitation.journaltitleAgronomy for sustainable development
dcterms.bibliographicCitation.originalpublishernameSpringer
dcterms.bibliographicCitation.originalpublisherplaceHeidelberg
dcterms.bibliographicCitation.volume43
local.export.bibtex@article{Wallach2023-07-13, doi = {10.1007/s13593-023-00900-0}, author = {Wallach, Daniel and Palosuo, Taru and Thorburn, Peter et al.}, title = {Proposal and extensive test of a calibration protocol for crop phenology models}, journal = {Agronomy for Sustainable Development}, year = {2023-07-13}, volume = {43}, number = {4}, }
local.title.fullProposal and extensive test of a calibration protocol for crop phenology models

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
s13593-023-00900-0.pdf
Size:
1015.65 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
13593_2023_900_MOESM1_ESM.docx
Size:
2.92 MB
Format:
Microsoft Word XML

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: