A new version of this entry is available:
Loading...
Doctoral Thesis
2016
Investor sentiment in blogs : design of a classifier and validation by a portfolio simulation
Investor sentiment in blogs : design of a classifier and validation by a portfolio simulation
Abstract (English)
How can investment recommendations available on the web significantly improve stock selection? This dissertation shows how online investment recommendations can automatically be analyzed, aggregated, and used to achieve a return above the market’s. To this respect, it is crucial to understand how investment recommendations affect returns. Therefore, the dissertation examines the effects of direct and indirect investment recommendations from blogs in the form of investor sentiments (i.e., opinions) on the expected development of stock prices. Blogs have made it possible for everyone to publish articles on the web. The studied blog platforms Seekingalpha and Blogspot host a wealth of semi-professional stock analyses, investor opinions, company rumors, and stock recommendations.
The dissertation’s study uses about 77,000 articles from Seekingalpha and about 198,000 articles from Blogspot over a five-year period (2007-2011). A novel text classification method is developed for the automatic classification of blog articles in a positive vs. negative sentiment. To achieve a high classification accuracy, experiments were carried out to configure this method. The text classification method uses machine learning techniques, which learn from manually classified articles from a novel corpus.
Using behavioral finance theory, hypotheses are developed about the effects of investor sentiments on a portfolios returns. To test these hypotheses, a monthly selection of stocks of the Dow Jones Industrial Average into a portfolio was simulated (i.e., backtested). The selection is made by means of the ranking of the monthly aggregated overall sentiment of all articles regarding a specific stock.
The results show that a return above the market’s can be achieved with aggregated investor sentiments from the Seekingalpha platform. In most cases, the achieved return exceeds the return of a momentum portfolio based solely on past returns. For the platform Blogspot, results are weaker. Overall, it seems advisable for investors to select a small number of stocks based on the most positive and most negative monthly investor sentiments from professional blogs.
Abstract (German)
Wie können Anlageempfehlungen aus dem Web die Aktienauswahl deutlich verbessern? Die Dissertation zeigt, wie solche Online-Anlageempfehlungen automatisch analysiert, verdichtet und zur Erzielung einer über dem Markt liegenden Rendite genutzt werden können. Hierzu ist entscheidend, wie sich Anlageempfehlungen auf die Renditen auswirken. Daher untersucht die Dissertation die Wirkung von direkten und indirekten Anlageempfehlungen aus Blogs in der Form von Meinungen (sogenannte Investor Sentiments) zur erwarteten Entwicklung von Aktienkursen. Mit Hilfe von Blogs ist es jedermann möglich, im Web Artikel zu veröffentlichen. Auf den untersuchten Blog-Plattformen Seekingalpha und Blogspot finden sich zahllose semi-professionelle Aktienanalysen, Anlegermeinungen, Gerüchte zu Unternehmen und Aktienempfehlungen.
Für die Untersuchung verwendet die Arbeit etwa 77.000 Artikel von Seekingalpha und etwa 198.000 Artikel von Blogspot aus einem Fünfjahreszeitraum (2007-2011). Für die automatische Einstufung der Artikel in eine positive vs. negative Meinung wird eine neuartige Textklassifikationsmethode entworfen. Um eine möglichst hohe Genauigkeit der Methode zu erzielen, wurden Experimente zur Parametrisierung durchgeführt. Die Textklassifikation erfolgte mit Hilfe eines maschinellen Lernverfahrens. Das Verfahren lernt mit Hilfe von manuell eingestuften Artikeln aus einem eigens entwickelten Korpus.
Unter Bezugnahme auf die Behavioral-Finance-Theorie werden Hypothesen zu den Wirkungen von Anlegermeinungen auf Renditen eines Portfolios entwickelt. Zur Überprüfung der Hypothesen wurde eine monatliche Auswahl von Aktien des Dow Jones Industrial Average in ein Portfolio über einen Fünfjahreszeitraum simuliert. Die Auswahl erfolgt mit Hilfe der Rangfolge der monatlich verdichteten Gesamtmeinung aller Artikel zu einer Aktie.
Die Ergebnisse zeigen, dass mit Hilfe der verdichteten Anlegermeinungen von der Plattform Seekingalpha eine über dem Markt liegende Rendite erzielt werden kann. Die Rendite übertrifft in fast allen Fällen die Rendite eines Portfolios, das rein basierend auf vergangenen Renditen erstellt wurde. Für die Plattform Blogspot fallen die Ergebnisse schwächer aus. Insgesamt scheint es für Anleger empfehlenswert, eine kleine Anzahl von Aktien entsprechend der positivsten und negativsten monatlich verdichteten Anlegermeinung aus professionellen Blogs auszuwählen.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Notes
Publication license
Publication series
Published in
Faculty
Faculty of Business, Economics and Social Sciences
Institute
Institute of Health Care & Public Management
Examination date
2016-05-12
Supervisor
Edition / version
Citation
Identification
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
330 Economics
Collections
Original object
Standardized keywords (GND)
BibTeX
@phdthesis{Klein2016,
url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6105},
author = {Klein, Achim},
title = {Investor sentiment in blogs : design of a classifier and validation by a portfolio simulation},
year = {2016},
school = {Universität Hohenheim},
}