You can't always get what you want? Estimator choice and the speed of convergence

dc.contributor.authorKufenko, Vadimde
dc.contributor.authorPrettner, Klausde
dc.date.accessioned2024-04-08T08:53:39Z
dc.date.available2024-04-08T08:53:39Z
dc.date.created2016-11-17
dc.date.issued2016
dc.description.abstractWe propose theory-based Monte Carlo simulations to quantify the extent to which the estimated speed of convergence depends on the underlying econometric techniques. Based on a theoretical growth model as the data generating process, we find that, given a true speed of convergence of around 5%, the estimated values range from 0.2% to 7.72%. This corresponds to a range of the half life of a given gap from around 9 years up to several hundred years. With the exception of the (very inefficient) system GMM estimator with the collapsed matrix of instruments, the true speed of convergence is outside of the 95% confidence intervals of all investigated state-of-the-art estimators. In terms of the squared percent error, the between estimator and the system GMM estimator with the non-collapsed matrix of instruments perform worst, while the system GMM estimator with the collapsed matrix of instruments and the corrected least squares dummy variable estimator perform best. Based on these results we argue that it is not a good strategy to rely on only one or two different estimators when assessing the speed of convergence, even if these estimators are seen as suitable for the given sources of biases and inefficiencies. Instead one should compare the outcomes of different estimators carefully in light of the results of Monte Carlo simulation studies.en
dc.identifier.swb47984254X
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6096
dc.identifier.urnurn:nbn:de:bsz:100-opus-12979
dc.language.isoeng
dc.relation.ispartofseriesHohenheim discussion papers in business, economics and social sciences; 2016,20
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectSpeed of convergenceen
dc.subjectPanel dataen
dc.subjectMonte-Carlo simulationen
dc.subjectEstimator biasen
dc.subjectEstimator efficiencyen
dc.subjectEconomic growthen
dc.subject.ddc330
dc.subject.gndWirtschaftswachstumde
dc.subject.gndSchätzfunktionde
dc.subject.gndKonvergenzde
dc.titleYou can't always get what you want? Estimator choice and the speed of convergencede
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Kufenko2016, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6096}, author = {Kufenko, Vadim and Prettner, Klaus}, title = {You can't always get what you want? Estimator choice and the speed of convergence}, year = {2016}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, }
local.export.bibtexAuthorKufenko, Vadim and Prettner, Klaus
local.export.bibtexKeyKufenko2016
local.export.bibtexType@techreport
local.faculty.number3de
local.institute.number520de
local.opus.number1297
local.series.issueNumber2016,20
local.series.titleHohenheim discussion papers in business, economics and social sciences
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dp_20_2016_online.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext