Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "c-di-AMP signaling"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Adaptation of Listeria monocytogenes to perturbation of c‐di‐AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system
    (2022) Wang, Mengyi; Wamp, Sabrina; Gibhardt, Johannes; Holland, Gudrun; Schwedt, Inge; Schmidtke, Kai‐Uwe; Scheibner, Katrin; Halbedel, Sven; Commichau, Fabian M.
    The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L. monocytogenes.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy