Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Yield performance"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Impact of construction measures and heat emissions from the operation of underground power cables on spelt (Triticum spelta L.) growth and yield
    (2025) Trenz, Jonas; Ingwersen, Joachim; Schade, Alexander; Memic, Emir; Hartung, Jens; Graeff-Hönninger, Simone
    Germany decided to promote the energy supply toward low or zero-carbon sources by the middle of the century. Therefore, massive infrastructural investments in grid expansion are needed. These grid expansions will be conducted with 525 kV High-Voltage Direct Current (HVDC) cables, buried at a depth of 1.5 m, passing mainly through arable land. The expected main effects of these cables on soils and crops are caused by construction measures (soil excavation and backfilling of soil material) and soil warming caused by heat dissipation using HVDC. To date, the impact of subsoil warming on crop growth and yield has not been studied in detail. This study investigates the effects of construction measures and subsoil warming on a field scale level for a 2-yr data set (2022 and 2023) in South Germany. The intricate dynamics between construction measures and subsoil heating on spelt (Triticum spelta L.) growth and yield were analyzed in three treatments: 1) Heated Trench (HT), 2) Unheated Trench (UT), and 3) Control. Construction measures were conducted by excavating the soil with a triple lift method (separated into three layers: A-, B-, and C-layer), storing them separately in ground heaps, and backfilling according to their natural layering. The triple lift method resulted in a 12.1 % decrease in bulk density (BD) for UT and 8.9 % for HT in the subsoil compared to the Control. The changes in soil properties affected spelt growth and yield, resulting in a yield increase of 14 % for the UT treatment. Additional subsoil warming in the HT treatment increased the topsoil temperature by 1.2 °C and spelt yield by 24 %. The triple lift method showed promising results, minimizing the impacts on soil compaction and maintaining the spelt growth and yield level.
  • Loading...
    Thumbnail Image
    Publication
    Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials
    (2021) Laidig, Friedrich; Feike, T.; Klocke, B.; Macholdt, J.; Miedaner, Thomas; Rentel, D.; Piepho, Hans-Peter
    Plant breeding and improved crop management generated considerable progress in cereal performance over the last decades. Climate change, as well as the political and social demand for more environmentally friendly production, require ongoing breeding progress. This study quantified long-term trends for breeding progress and ageing effects of yield, yield-related traits, and disease resistance traits from German variety trials for five cereal crops with a broad spectrum of genotypes. The varieties were grown over a wide range of environmental conditions during 1988–2019 under two intensity levels, without (I1) and with (I2) fungicides and growth regulators. Breeding progress regarding yield increase was the highest in winter barley followed by winter rye hybrid and the lowest in winter rye population varieties. Yield gaps between I2 and I1 widened for barleys, while they shrank for the other crops. A notable decrease in stem stability became apparent in I1 in most crops, while for diseases generally a decrasing susceptibility was found, especially for mildew, brown rust, scald, and dwarf leaf rust. The reduction in disease susceptibility in I2 (treated) was considerably higher than in I1. Our results revealed that yield performance and disease resistance of varieties were subject to considerable ageing effects, reducing yield and increasing disease susceptibility. Nevertheless, we quantified notable achievements in breeding progress for most disease resistances. This study indicated an urgent and continues need for new improved varieties, not only to combat ageing effects and generate higher yield potential, but also to offset future reduction in plant protection intensity.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy