Browsing by Subject "Varroa destructor"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Der Einfluss von Wirtsfaktoren der Honigbiene (Apis mellifera L.) auf den Reproduktionserfolg der parasitischen Milbe Varroa destructor (Anderson & Trueman) auf die Auswirkungen einer horizontalen Verbreitung des Parasiten auf den Befall der Bienenvölker(2014) Frey, Eva; Bessei, WernerThe honey bee colony is faced with a huge number of pathogens, including bee viruses, bacteria, fungi and mites. Among these pathogens, the ectoparasitic mite Varroa destructor is considered the most important parasite of the honey bee worldwide. This mite was discovered at the beginning of the last century in South East Asia within colonies of the original host, the Eastern honey bee Apis cerana. From the middle of the last century the mite has been spread worldwide by transports of infested A. mellifera colonies with dramatic consequences for both, feral and managed honey bee colonies. In the meantime this parasite has become the most serious economic problem for global beekeeping. In temperate climates nearly all honey bee colonies are infested and without yearly Varroa treatments these colonies would collapse within a few years. This confirms that a stable host parasite relationship has not been established yet. Therefore the control of V. destructor still represents the main challenge for beekeeping. The main reason for host damages is the dramatic increase of the Varroa population during the season. Our honey bee colonies are obviously unable to control this population dynamic of the parasite. The increase of the mite population is influenced by the reproductive rate of Varroa females within individual brood cells, by host-parasite-interactions on the colony level and by interactions among honey bee colonies on the population level. The dissertation at hand presents experimental approaches and results at all three levels. On the individual level we were able to demonstrate that age-dependent signals of the honey bee larvae not only activate the oogenesis of the Varroa females but even trigger the further course of mite reproduction. Our studies on the activation of the Varroa reproduction revealed that exclusively larvae within 18 h (worker) and 36 h (drones), respectively, after cell capping were able to stimulate the mite’s oogenesis. Furthermore, we were able to confirm for the first time the presence of a signal in the host larvae allowing the reproducing mites to adjust their own reproductive cycle to the ontogenetic development of the host. Under certain conditions such host signals can even stop an oogenesis of the female mite that has already been started. From an adaptive point of view that sort of a stop signal enables the female mite to save resources for a next reproductive cycle if the own egg development is not sufficiently synchronized with the development of the host. My results indicate that age specific volatiles of the larval cuticle are involved in the regulation of mite reproduction. According to preliminary quantitative GC–MS analysis we suggest certain fatty acid ethyl esters as candidate compounds. These host signals – either involved in the activation or in the interruption of the Varroa reproduction – offer possibilities to influence the reproductive success of Varroa females and might therefore be used for biological control in the future. Within an EU cooperation project we could additionally demonstrate that the so called temporary infertility of Varroa females is significantly correlated with three QTL of the host larvae. This confirms a genetic basis for host resistance factors that inhibit the mite reproduction. For this study we made use of the fact that we had access to a honey bee population at the island of Gotland, Sweden that has survived mite infestation without any treatment for more than 10 years. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens and produced a mapping population of haploid drones from these hybrids. Because honey bees have a haplodiploid sex determination, the haploid drones provide an extremely simple and highly efficient model system for genetic studies. Subsequently, we mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on the suppression of V. destructor reproduction by epistasis. The detection of this epistatic interaction was only possible because we used the simple genetic make-up of haploid drones. For studies on Varroa resistance on the colony level and for selection programs the interactions among the colonies of the local honey bee population have to be considered. In two experimental approaches I was able to prove that the invasion of Varroa mites from neighboring colonies – often called “reinvasion” – significantly influences the population dynamic of the parasite within the colony. First, we quantified the number of mites invading individual colonies in relation to the invasion pressure (= number and distance of infested colonies). For this approach we made use of an isolated military training area near Münsingen at the Swabian Alb not accessible to other beekeepers. We established ten “mite receiver colonies” continuously treated against V. destructor and placed them at distances of 1m to 1.5 km from four heavily infested “mite donor colonies”. In the donor colonies, we estimated the population of bees, brood, and V. destructor at three week intervals. The invasion of mites into the receiver colonies was recorded every 7-12 days. During the measurement period of about two months, between 85 and 444 mites per colony were introduced into the receiver colonies. Surprisingly, there were no significant differences in the invasion rates in relation to the distance between donor and receiver colonies. The second approach was performed under more realistic field conditions of two experimental apiaries established in regions with high and low bee densities, respectively. Additionally, in this experiment we analyzed the multiplication of the invaded mites. Thereby we confirmed that horizontal transmission plus the reproduction of the invaded Varroa mites can cause an exponential increase of the mite population that may exceed the damage threshold within three months. We were further able to show that the invasion rates – and therefore the final infestation – differ significantly according to the number of honey bee colonies in the neighborhood of the apiary: At the site with a high bee density, the average invasion rate per colony over the entire three and a half months period was 462 mites per colony compared to only 126 mites per colony at the site with a low bee density. As a consequence, the colonies of the apiary at the high bee density site revealed an average final infestation in November of 2,082 mites per colony compared to 340 mites per colony at the low bee density site. The highly infested colonies lost about three times more bees compared to the lower infested colonies – obviously a result of Virus infections transmitted by Varroa mites. With my different approaches I was able to add further elements of knowledge for a better understanding of how host factors and ambient conditions influence the Varroa reproduction within individual brood cells and the population dynamic within a honey bee colony. A better knowledge of these host parasite interactions is essential for the selection of mite resistant colonies and further more important for the development of concepts for an effective Varroa treatment.Publication Reduced parasite burden in feral honeybee colonies(2023) Kohl, Patrick L.; D'Alvise, Paul; Rutschmann, Benjamin; Roth, Sebastian; Remter, Felix; Steffan‐Dewenter, Ingolf; Hasselmann, MartinBee parasites are the main threat to apiculture and since many parasite taxa can spill over from honeybees (Apis mellifera) to other bee species, honeybee disease management is important for pollinator conservation in general. It is unknown whether honeybees that escaped from apiaries (i.e. feral colonies) benefit from natural parasite‐reducing mechanisms like swarming or suffer from high parasite pressure due to the lack of medical treatment. In the latter case, they could function as parasite reservoirs and pose a risk to the health of managed honeybees (spillback) and wild bees (spillover). We compared the occurrence of 18 microparasites among managed (N = 74) and feral (N = 64) honeybee colony samples from four regions in Germany using qPCR. We distinguished five colony types representing differences in colony age and management histories, two variables potentially modulating parasite prevalence. Besides strong regional variation in parasite communities, parasite burden was consistently lower in feral than in managed colonies. The overall number of detected parasite taxa per colony was 15% lower and Trypanosomatidae, chronic bee paralysis virus, and deformed wing viruses A and B were less prevalent and abundant in feral colonies than in managed colonies. Parasite burden was lowest in newly founded feral colonies, intermediate in overwintered feral colonies and managed nucleus colonies, and highest in overwintered managed colonies and hived swarms. Our study confirms the hypothesis that the natural mode of colony reproduction and dispersal by swarming temporally reduces parasite pressure in honeybees. We conclude that feral colonies are unlikely to contribute significantly to the spread of bee diseases. There is no conflict between the conservation of wild‐living honeybees and the management of diseases in apiculture.Publication Standard Methods for Dissection of Varroa destructor Females(2021) Piou, Vincent; Vilarem, Caroline; Rein, Carolin; Sprau, Lina; Vétillard, AngéliqueVarroa destructor (Anderson and Trueman) is known as a major pest of Apis mellifera L, especially in the Northern Hemisphere where its effects can be deleterious. As an obligate parasite, this mite relies entirely on its host to reproduce and complete its cycle. Studies focusing on isolated organs are needed to better comprehend this organism. To conduct such targeted molecular or physiological studies, the dissection of V. destructor mites is crucial as it allows the extraction of specific organs. Here, we propose a technical article showing detailed steps of females V. destructor dissection, illustrated with pictures and videos. These illustrated guidelines will represent a helpful tool to go further in V. destructor research.Publication Temporal increase of Varroa mites in trap frames used for drone brood removal during the honey bee season(2022) Odemer, Richard; Odemer, Franziska; Liebig, Gerhard; de Craigher, DorisVarroa mites are highly attracted to drone brood of honey bees (Apis mellifera), as it increases their chance of successful reproduction. Therefore, drone brood removal with trap frames is common practice among beekeepers in Europe and part of sustainable varroa control. However, it is considered labour‐intensive, and there are doubts about the effectiveness of this measure. At present, it is mostly unknown how many mites a drone frame can carry at different times of the season, and how many mites can be removed on average if this measure is performed frequently. Therefore, we sampled a total of 262 drone frames with varying proportion of capped cells (5–100%) from 18 different apiaries. Mites were washed out from brood collected from mid‐April to mid‐July based on a standard method to obtain comparable results. We found that a drone frame carried a median of 71.5 mites, and with the removal of four trap frames, about 286 mites can be removed per colony and season. In addition, mite counts were significantly higher in June and July than in April and May (Tukey‐HSD, P < 0.05). The number of mites and the proportion of capped cells, however, were not correlated (R2 < 0.01, P < 0.05). Our results suggest that drone brood removal is effective in reducing Varroa destructor numbers in colonies, supporting the findings of previous studies on the efficacy of this measure. Although mite counts varied, we believe that increasing sample size over different seasons and locations could elucidate infestation patterns in drone brood and ultimately improve drone brood removal as an integrated pest management tool for a wider audience of beekeepers.