Browsing by Subject "Ultraviolett"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication UV-C-Behandlung von Traubenmost zur Inaktivierung von Mikroorganismen(2018) Diesler, Kathrin; Scharfenberger-Schmeer, MarenThe development of new preservation process techniques to protect ingredients and maintain a high quality standard is always a main goal in the food industry. In course of this, microbial safety has top priority. UV-C technology is a modern, non-thermal process with high efficiency. It has been used for sterilization and treatment of drinking water for many years. Also, ultraviolet radiation for disinfection purposes is already being used in other areas of food production. To what extent this method can be successfully applied in the field of grape must production, will be investigated in this dissertation. For this purpose, several yeasts and bacteria, relevant in this area, were examined for their inactivation potential by UV-C treatment. To ensure the best possible microbial inactivation in must, it is essential to determine an ideal treatment dose for both yeasts and bacteria. The results have confirmed that bacteria are far more sensitive to UV C treatment, than yeasts. It was also shown that there are major differences in UV-C stability within the seven yeast species and six bacteria species used in this study. The analyses have identified Metschnikowia pulcherrima and Acetobacter aceti as the most UV-C stable and Brettanomyces custerianus and Pediococcus sp. as the most sensitive organisms. Furthermore, three morphologically different Brettanomyces strains were used to show that there are also strain-specific variances in the response to UV-C treatment. Using Saccharomyces cerevisiae as an example, a potential formation of UV-C resistance was also ruled out. For this purpose, yeast cells were exposed to a dose, that did not result in complete inactivation. The surviving cells were cultured and retreated. Even after repeating this process eight times, no change in the UV-C response of the yeast cells could be detected. For the application of UV-C technology in the juice and wine industry it has to be ensured, that microorganisms are killed directly and their enzymatic activities are directly inhibited. Yeasts and bacteria could further convert sugar to alcohol or form unwanted metabolic byproducts. Therefore, the enzymatic activity after the initial treatment and during the inactivation process of Saccharomyces cerevisiae was analyzed in more detail. HPLC was used to determine the content of glucose, fructose and ethanol. No enzymatic activity could be detected in the UV-C treated samples from the moment after the initial UV-C treatment, up to the day of complete destruction. However, the effectiveness of UV-C treatment of must and wine cannot be attributed solely to the responsiveness of the various microorganisms. Other product parameters such as grape variety, turbidity and optical density also play a decisive role. In this context, four different musts with different optical density and turbidity were treated and the inactivation kinetics of Saccharomyces cerevisiae were compared. In this work it could be proved, that with an increasing optical density and a higher turbidity, the efficiency of the UV-C treatment in must decreases strongly. The success of a treatment is also directly dependent on the initial contamination rate of the product. Tests with different starting cell numbers have shown, that the required inactivation dose also has to be increased, as the number of cells increases. In the winemaking process, however, not only yeasts and bacteria can be a potential source of danger. The fungal infection of grapes by Botrytis cinerea also carries a high risk. The polyphenol oxidase laccase, produced by the fungus, damages ingredients and leads to a colour change in must and wine. In the investigations it could be proven, that it is possible to strongly reduce or completely inactivate the enzymatic activity in Botrytis infected must, depending on the starting concentration. In summary, UV-C technology represents an effective alternative and extension for current oenological practice. It offers the possibility to inactivate a large number of wine relevant microorganisms without causing resistance. In addition, this work has created a new framework for the application of must specific parameters. The results for the inactivation of the enzyme laccase are also proved to be extremely promising.