Browsing by Subject "Tumorstammzellen"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien(2014) Mihatsch, Julia; Rodemann, H.-PeterCancer is the second leading cause of death in industriated nations. Besides surgury and chemotherapy, radiotherapy (RT) is an important approch by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathwas, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the present study was to investigate the role of CSCs in resistance of radioselected subclones of non-small cell lung cancer (NSCLC) and breast cancer cells to irradiation. Additionally, the role of EGFR dependent PI3K/Akt/DNA-PKcs signaling in the context of CSC-mediated radiotherapy resistance was investigated. The following major results were obtained: 1) Radioresistant tumor cells from NSCLC-A549 cells as well as SK-BR-3 breast cancer cells could be isolated in vitro by a radioselection process. 2) In line with the proposed CSC biological behaviors radioselected cells presented extended population doubling time and decreased plating efficiency. 3) Among identified potential CSC markers such as CD133, Oct-4, Sox2 or aldehyde dehydrogenase (ALDH) expression, solely expression of the embryonic stem cell marker Oct-4 was increased in the radio-selected SK-BR-3 cells. However, increased ALDH activity but not enhanced ALDH protein expression was associated with radioresis-tance of A549 cells. 4) Respectively, ALDH activity was found to be involved in radio-resistance partially through PI3K pathway. 5) Using an siRNA approach, a differential effect of ALDH1 vs ALDH2 in terms of post-irradiation survival of tumor cells was demonstrated. In this context and in contrast to the role of ALDH2 a prosurvival effect of ALDH1 could be observed. 6) Radioresistance of IR-selected tumor cells was partially mediated through EGFR/PI3K/DNA-PKcs-dependent accelerated repair of DNA-DSBs. Thus, based on the described major findings in this study it is proposed that targeting of PI3K/Akt pathway and ALDH1 might be effective approaches towards overcoming CSC-mediated radiotherapy resistance.