Browsing by Subject "Plant growth promoting rhizobacteria"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Combining improved mungbean cultivars with plant growth promoting rhizobacteria inoculation and regulated deficit irrigation to increase crop productivity(2024) Pataczek, Lisa; Cadisch, GeorgThe cultivation of legumes provides an approach to sustainably intensify agricultural production, since short-duration legumes can fit into existing cereal-based cropping systems, diversifying farm incomes and farmers diets, as well as providing environmental benefits through the fixation of atmospheric N2 and, thus, enhancing yields of following crops. Mungbean is a legume, which plays already an important role in the traditional nutrition of people in the Global South. Its nutritious seeds can improve food security and the short growing duration facilitates the diversification of mainly cereal-based crop rotations. However, yields are low and may even become lower in future in the face of climate change. Main constraints of mungbean cultivation include pest and diseases, as well as heat, drought and soil salinity due to inappropriate irrigation techniques or saline ground water. The main aim of this thesis was therefore to analyse the effects of more advanced cultivation techniques, i.e. the use of plant growth promoting rhizobacteria (PGPR) and regulated deficit irrigation (RDI), on the productivity and nitrogen (N) fixation capacity of improved mungbean (Vigna radiata L.) cultivars, resistant and/or tolerant to pests, diseases, heat and soil salinity. An extended literature review was conducted to summarize the current understanding of the use of PGPRs and the effect on crop productivity, especially on marginal land (Chapter 2). The use of PGPRs can on the one hand side increase plant growth through direct and indirect mechanisms, such as BNF, hormone production and nutrient solubilization or the production of antibiotics to suppress phytodiseases. Especially 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity plays a significant role to reduce the negative impact of stress environments. On the other side PGPRs can be used to remediate decontaminated sites, through metabolic capabilities, transforming for instance aromatic compounds into less toxic compounds, or the biodegradation of pesticides and organic pollutants. Since ACC deaminase-producing bacteria are also supposed to enhance root growth, it is assumed that they can potentially increase soil N uptake and/or infection sites for rhizobia to biologically fix atmospheric N2 (BNF). In order to test the effect of ACC deaminase-producing PGPRs on mungbean productivity and N accumulation, three strains were tested as single- or multistrain inoculation in the field: Rhizobium phaseoli, Bacillus subtilis and Pseudomonas fluorescens (Chapter 3). Their effect on one improved mungbean cultivar (NM11, resistant to the Mungbean Yellow Mosaic Disease) was assessed on two research sites in Faisalabad, Pakistan. The impact of the strains differed significantly, with no effect on productivity (total biomass, seed yield) or total N accumulation (BNF and soil-N uptake) with multi-strain inoculation of all strains and single-strain inoculation of P. fluorescens. Inoculation with B. subtilis did, however, result in significantly increased dry matter (roots: +211 kg ha-1, total dry matter: +1.7 t ha-1), and total plant-N (+36 kg ha-1), while R. phaseoli inoculation enhanced BNF (+24%). The results suggested that only the single strain inoculation of B. subtilis and R. phaseoli was promising in terms of productivity increase, however, the choice of the strain should be made according to the soil-N status: low soil-N favors R. phaseoli inoculation, while medium to high soil-N would rather point towards the use of B. subtilis. The improved mungbean cultivar NM11 was additionally tested together with three other improved cultivars (AVMU 1604, AVMU 1635 and KPS2, resistant/tolerant to powdery mildew, bruchids and heat and salt, respectively), in combination with RDI in a greenhouse trial at the University of Hohenheim (Chapter 4). The aim was to identify differences in drought adaptation strategies between the cultivars in terms of dry matter partitioning, yield, harvest index, pod harvest index, water use efficiency and carbon-13 isotope discrimination. Levels of water deficit as depletion fractions (%) of total available soil water were set to 0.45, 0.65 and 0.8, corresponding to recommended irrigation, moderate and severe water deficit, respectively. The cultivars differed in their drought resistance strategies, exhibiting either drought escape, avoidance, tolerance or a combination of several strategies. The cultivar KPS2 showed mainly a drought escape mechanism through faster development, stable yields and greatest harvest index/pod harvest index (36%/69%) across all RDI treatments and cultivars. The cultivar AVMU 1604 displayed mainly a mixture of drought avoidance and escape through increased remobilization of assimilates from vegetative plant parts to pods/seeds, resulting in greater yield under water deficit by 52%. The choice of a cultivar for the field should be based, thus, on the prevailing climatic conditions (season and region): KPS2 can grow in areas with terminate drought conditions, whereas AVMU 1604 can tolerate intermittent drought conditions. The results of this thesis showed that ACC deaminase-producing PGPRs can substantially affect N uptake, although this effect is barely discussed in literature. Moreover, improved mungbean cultivars, exhibiting already a range of tolerances and resistances to certain pests and diseases, showed a great potential in adapting to drought conditions, representing a viable option for cultivation under increasing abiotic and biotic stress factors in the face of climate change.Publication Single-strain inoculation of Bacillus subtilis and Rhizobium phaseoli affects nitrogen acquisition of an improved mungbean cultivar(2024) Pataczek, Lisa; Armas, Juan Carlos Barroso; Petsch, Theresa; Hilger, Thomas; Ahmad, Maqshoof; Schafleitner, Roland; Zahir, Zahir Ahmad; Cadisch, Georg; Pataczek, Lisa; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Armas, Juan Carlos Barroso; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Petsch, Theresa; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Hilger, Thomas; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Ahmad, Maqshoof; Department of Soil Science, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan; Schafleitner, Roland; Biotechnology, World Vegetable Center, Headquarters, 60 Yi-Min Liao, 74151, Shanhua, Tainan, Taiwan; Zahir, Zahir Ahmad; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan; Cadisch, Georg; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, GermanyPlant growth-promoting rhizobacteria (PGPR) increase plant root growth, potentially improving soil nitrogen (N) uptake, and productivity. Legumes, for instance mungbean, could also benefit from a rise in potential infection sites for nodulation, thereby increasing rates of biological N2 fixation (BNF). Consequently, the objectives of this study were (i) to assess whether PGPR had an effect on mungbean root biomass and if that was linked to N accumulation and productivity; (ii) to identify whether multi-strain inoculation showed greater efficacy in increasing N accumulation and overall productivity than single-strain inoculation; (iii) to test whether N acquisition was based on BNF rather than on soil N uptake. Field trials were conducted in two seasons at the University of Agriculture, Faisalabad with mungbean cultivar NM11 and multi-strain inoculation consisting of Rhizobium phaseoli, Bacillus subtilis, and Pseudomonas fluorescens. The strains were tested additionally in the second season as single-strain inoculation. Multi-strain and inoculation with P. fluorescens alone had no effect on root biomass, total plant-N, BNF or soil N uptake. Inoculation with B. subtilis, however, resulted in significantly increased root dry matter (+ 211 kg ha− 1), total dry matter (+ 1.7 t ha− 1), and total plant-N (+ 36 kg ha− 1). Only inoculation with R. phaseoli enhanced BNF (+ 24%). Yield was not affected by any inoculation. The results suggested that total plant-N was based on soil N uptake rather than on BNF and demonstrated that only single strains affected total N accumulation, pointing to antagonistic mechanisms of the strains in a mixed inoculum.