Browsing by Subject "Pflanzenphysiologie"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Bioeffector products for plant growth promotion in agriculture : modes of action and the application in the field(2021) Weber, Nino Frederik; Neumann, GünterModern agriculture faces a conflict between sustainability and the demand for a higher food production. This conflict is exacerbated by climate change and its influence on vegetation, ecology and human society. To reduce land use, the reduction of yield losses and food waste is crucial. Moreover a sustainable intensification is necessary to increase yields, while at the same time input of limited resources such as drinking water or fertilizer should be kept as low as possible. This might be achieved by improving nutrient recycling and plant resistance to abiotic or biotic stress. Bioeffectors (BE) comprise seaweed or plant extracts and microbial inoculums that may stimulate plant growth by phytohormonal changes and increase plant tolerance to abiotic stress (biostimulants), solubilize or mobilize phosphorus from sparingly soluble sources such as Al/Fe or Ca-phosphates in the soil, rock phosphates, recycling fertilizer or organic phosphorus sources like phytate (biofertilizer), or improve plant resistance against pathogens by induced-systemic resistance (ISR) or antibiosis (biocontrol). For this study, in total 18 BE products were tested in germination, pot and field experiments for their potential to improve plant growth, cold stress tolerance, nutrient acquisition and yield in maize and tomato. Additionally, a gene expression analysis in maize was performed using whole transcriptome sequencing (RNA-Seq) after the application of two potential plant growth promoting rhizobacteria (PGPR), the Pseudomonas sp. strain DSMZ 13134 “Proradix” and the Bacillus amyloliquefaciens strain FZB42. Seaweed products supplemented with high amounts of the micronutrients Zn and Mn were effective in reducing detrimental cold stress reactions in maize whereas microbial products and seaweed extracts without micronutrient supplementation failed under the experimental conditions. At optimal temperature the product containing the Pseudomonas sp. strain was repeatedly able to stimulate root and shoot growth of maize plants whereas in tomato only in heat-treated soil substrate significant effects were observed. Results indicate that the efficacy of the product was mainly attributed to stimulation or shifts in the soil microbial community. Additionally, the FZB42 strain was able to stimulate root and plant growth in some experiments whereas the effects were less reproducible and more sensitive to environmental conditions. Fungal BE products were less effective in plant growth stimulation and showed detrimental effects in some experiments. Under the applied experimental conditions BE-derived plant growth stimulation mainly was attributed to biostimulation but aspects of biofertilization or biocontrol cannot be excluded, as all experiments were conducted in non-sterile soil substrates. Root and shoot growth are stimulated in response to hormonal shifts. In the gene expression analysis only weak responses to BE treatments were observed, as previously reported from other studies conducted under non-sterile conditions. Nevertheless, some plant stress responses were observed that resembled in some aspects those reported for phosphorus (P) deficiency in others those reported for ISR/SAR. Especially the activation of plant defence mechanisms, such as the production of secondary metabolites, ethylene production and reception and the expression of several classes of stress-related transcription factors, including JA-responsive JAZ genes, was observed. It also seems probable that in plants growing in PGPR-drenched soils, especially at high application rates, a sink stimulation for assimilates triggers changes in photosynthetic activity and root growth leading to an improved nutrient acquisition. Nevertheless, due to the complexity of interactions in natural soil environments as well as under practice conditions, a designation of a distinct mode of action for plant growth stimulation by microbial BEs is not realistic. A comparison of the overall results with those reported in literature or other working groups in a common research project (“Biofector”) supported the often-reported low reproducibility of plant growth promotion effects by BE products under applied conditions. Factors that influenced BE efficacy were application time and rates, temperature, soil buffer capacity, phosphorus sources and nitrogen fertilization, light conditions and the soil microbial community. Results indicate that in maize cultivation seed treatment is the most economic application technique for microbial products whereas for vegetable or high-value crops with good economic benefit soil drenching is recommended. For seaweed extracts foliar application seems to be the most economic and efficient choice. Furthermore, results emphasize the importance of a balanced natural soil microflora for plant health and yield stability.Publication Growth regulation of ornamental and vegetable plants under greenhouse conditions by air stream-based mechanical stimulation(2022) Sparke, Marc-André; Müller, JoachimPlant growth regulation is an integral part within the production chain of ornamentals and vegetable seedlings. In protected ornamental horticulture, chemical-synthetic plant growth regulators (PGR) are used to reduce plant size. In vegetable production, the use of these substances is prohibited by law in most counties, which is why non-chemical growth regulation methods must be applied. In this respect, a production method for non-chemical growth control of ornamentals and vegetable seedlings under greenhouse conditions has been developed that is based on the application of air streams, inducing thigmomorphogenesis, the morphological and structural shaping of a plant organism during its development phase as influenced by touch-like stimuli. In own experiments jointly performed at the State Horticulture College and Research Station in Heidelberg, Germany, the application of a regularly applied air stimuli significantly reduced plant height by 24% in bellflower (Campanula ‘Merrybell’) compared to the control. In a subsequent practical trial at a local horticulture company (Fleischle GbR, Vaihingen Ensingen, Germany) plant height of creeping inchplant (Callisia repens) was significantly reduced by 20% on average compared to the control. In both experiments, a compressor generated the air stream which was then applied to the plant stand through custom-built stainless-steel nozzles (air pressure module). In tomato (Solanum lycopersicum ‘Romello’), air streams applied by the ‘air knife’ module, the ‘360° rotor’ module, or the ‘air pressure’ module resulted in a reduction in plant height of 26%, 33%, and 36% compared to the control, respectively. The air stream guided into the air knife module was applied by an aperture slot, which could be adjusted between 1 and 5 mm, while the air stream guided into the 360° rotor module was applied via two 360° rotating PVC tubes that were inserted on the bottom of a rectangular aluminium box. It turned out, that the air outlet velocity along the aperture slot of the air knife module was highly variable. Consequently, the stimulus intensity perceived by individual experimental plants was unequal. A multiple regression analysis clearly showed that the maximum air velocity explained the variability in plant height reduction by air streams generated with the air knife module best, while the stimulus duration and the cumulative air velocity were less relevant. Plant height reduction by air stream generated with the 360° rotor module was most homogenous compared to the other prototypes. Therefore, a subsequent series of experiments at the University of Hohenheim, Stuttgart, Germany, was carried out with the most promising prototype, the 360° rotor. No systematic dose-response relationship related to increasing application frequencies of 8, 24, 40, 56, 72, and 80 d-1 was found, confirming previous findings that the plants do not integrate the mechanical stimulus over time. In contrast, plant height reduction was significantly influenced by the air stream velocity. A sigmoidal dose-response relationship was fitted to the data and showed negligible effects on tomato plant height reduction between 0.7 m s-1 and 2.0 m s-1, followed by a steep increase in the reduction effect up to 4.7 m s-1 and a fading of the effect at 36 % reduction for air velocities beyond that. With the optimised settings for daily application frequency and air velocity, another experiment was conducted focusing on the effect of air stream application on phenotypic and physiological responses in tomato. Air stream application resulted in a gradual reduction of total leaf area by 14% on day 14 after treatment start, and radial growth was promoted relative to internode elongation compared to the untreated control, resulting in a more compact and stable plant phenotype. Air stream-treated plants translocated proportionally more assimilates to leaves and stems, at the expense of dry matter accumulation to petioles. The reduction in total leaf area was compensated by an increased leaf density, accompanied by a higher leaf green intensity and consequently by an average 8% increase in net CO2 assimilation rates compared to the control. Thus, air stream-treated plants partially sustained total biomass accumulation at the same level as compared to the control.Publication Interplay between nutrition, senescence and cytosine methylation in Arabidopsis thaliana(2023) Vatov, Emil; Ludewig, UweIn monocarpic plants, senescence is the last stage of leaf development and usually leads to the death of the organism. Systematic degradation of leaf components provides nutrients for the newly developing flowers and seeds. The physiology and transcriptional changes that occur in A. thaliana during this process are very well documented. However, the involvement of epigenic mechanisms remains to be established. In this study, the role of cytosine methylation in the regulation of monocarpic leaf senescence was examined in A. thaliana. Hypomethylated ddc (drm1/2 cmt3) and hypermethylated ros1 mutants showed consistent senescence-specific phenotypes. Disrupted de-novo methylation resulted in delayed, while disrupted demethylation resulted in earlier flowering and appearance of first symptoms of senescence. Both genotypes executed the senescence program faster than Col-0, with lower leaf:seed and higher C:N ratios. During nitrogen, or phosphorus withdrawal and resupply, nutrient remobilization was not inhibited in the two mutants. However, the plant’s response in terms of changes in shoot and root growth was delayed, or non existent. Furthermore, the impact of N withdrawal on delay of the flowering time was inhibited in the two mutants. These results support involvement of cytosine methylation in stress response signaling and downstream effects on organ development and flowering times. The stress response and senescence specific phenotypes of ddc could be partially due to disrupted WRKY signaling, as loss of methylation in W-box binding sites was prevalent, specifically near the transcription start sites of ORFs, and WRKY18, 25 and 53 appeared to be sensitive towards cytosine methylation. Overall decrease in cytosine methylation levels was observed, as early as the opening of the first flowers, together with a decrease in chlorophyll concentrations and an increase in H2O2 and glucose levels in the wild type Col-0. Inhibition in maintenance methylation in the early stages of reproductive growth is consistent with these observations. A complex interaction between four cytokinins was present as early as flower induction, followed by a mass turnover of bound auxin (IAA) at flower opening, that resulted in near doubling of free IAA at seed development. Plant defense responses were induced thereafter, as an increase in salicylic acid (SA) and camalexin occurred, followed by an increase in jasmonic acid (JA) and abscisic acid (ABA). Active RNA-dependent DNA methylation (RdDM) was indicated by a moderate overrepresentation of hypermethylated CHG and CHH loci, together with partial recovery of total methylation levels at the latest stages during seed maturation. Considering the delayed senescence phenotype of ddc, de-novo methylation via RdDM appears to be involved in initiation and execution of the senescence program. Furthermore, hypomethylation at ROS1 gene regulatory region was related to down regulation of gene expression. As an antagonist of RdDM, together with the early senescence phenotype of ros1, these results strengthen the importance of de-novo methylation for senescence, while active demethylation gets down regulated. Overall, methylation changes were little related to known gene expression changes that are associated with senescence. Limited targeting of WRKY and bZIP binding sites hinders conclusions about senescence specific effects of cytosine methylation in signal transduction networks. Altogether, the present work shines light on the importance of proper maintenance of cytosine methylation for flowering time, nutrient remobilization and senescence, and identifies defined cytosine methylation changes during senescence in a comprehensive physiological framework.Publication Sequestration of plant toxins in milkweed bugs (Heteroptera: Lygaeinae) : physiological implications and mechanisms(2023) Espinosa del Alba, Laura; Petschenka, GeorgInsect herbivores and plants together are a crucial component of terrestrial macro-biodiversity. Within the realm of plant-insect interactions, phytophagy by insects triggered an “arms-race” dynamic resulting in escalatory adaptation and counter-adaptation over time. This coevolution led to complex phenomena such as sequestration of plant toxins by specialized insects, with the main aim to deter predators. Although sequestration is an extensively reported phenomenon, many physiological aspects and underlying mechanisms remain largely unexplored. Milkweed bugs (Heteroptera: Lygaeinae) constitute a versatile model ideally suited for studying both areas due to their particular evolutionary history. They are primarily associated with plant species in the Apocynaceae which commonly produce cardenolides, but remarkably some milkweed bug species secondarily evolved novel associations with phylogenetically disparate plant families supplying new sources of chemically related or unrelated toxins. Using as model milkweed bugs the cardenolide specialist Oncopeltus fasciatus and Spilostethus saxatilis, a species that shifted to sequestration of the chemically unrelated colchicoids, the present thesis first aimed to develop a new artificial diet that allowed the incorporation of the desired types and amounts of toxins without impairing insect performance. Taking a simplified approach, an artificial diet presented in a pill form and made of 100% organic sunflower meal was established. Despite the fact that the new diet has remarkable energy and nutrient differences with sunflower seeds (the laboratory diet), no differences in terms of insect performance were found between the two diets in O. fasciatus and S. saxatilis. Moreover, the new diet presented an acceptable concentration accuracy and shelf-life for short-term toxin feeding assays. Once established, the new diet was used to investigate the effects of cardenolides and colchicoids on several life-history traits of S. saxatilis, and to compare them with the effect of cardenolides in O. fasciatus. Although both classes of toxins have different molecular targets (cardenolides: Na+/K+-ATPase; colchicoids: tubulin), S. saxatilis was able to sequester them at a cost-free level. In fact, an increased performance was observed in O. fasciatus and an according trend was found in S. saxatilis after dietary exposure to cardenolides and colchicoids, respectively. Among cardenolides, labriformin is especially toxic for milkweed-specialist Na+/K+-ATPases in vitro. Nevertheless, it was shown to have no costs in terms of growth and fertility at the whole organism level for O. fasciatus. This finding might be an example of reciprocal evolution between milkweed plants and its herbivores, where highly toxic cardenolides specifically targeted to insect specialists are counteracted by tolerance, detoxification, and sequestration strategies. To assess the role of sequestration beyond normal physiological conditions, O. fasciatus and S. saxatilis were orally infected with the bacterium Pseudomonas entomophila. Neither cardenolides nor colchicoids provided a higher resistance or tolerance. Regarding mechanisms of sequestration, the other overarching research topic of the present thesis, both in vivo (whole animal) and in vitro (isolated digestive tracts) approaches showed no reciprocal competition for the same transport mechanism between chemically related and unrelated toxins. Furthermore, the digestive tract of milkweed bugs did not seem to be a critical mediator as it is for other non-sequestering and sequestering species. The time course of sequestration for the model species was resolved from three days to one hour, and the higher levels of colchicoids detected in S. saxatilis compared to the level of cardenolides in O. fasciatus might indicate an early acquisition of defenses with the shift from cardenolide to colchicoid-containing plants. Finally, a hint to preadaptation mechanisms to resist novel toxins was documented in Spilostethus pandurus, a species that belongs to the same genus as S. saxatilis, thereby providing a basis for future investigations.