Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Pflanzen-mikrobielle Interaktionen"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Microbial consortia as inoculants for improvedcrop performance
    (2020) Bradáčová, Klára; Neumann, Günter
    The use of microbial consortia products (MCP) based on combinations of different strains of plant growth-promoting microorganisms (PGPM) and frequently also on non-microbial bio-stimulants (BS) with complementary beneficial properties, is discussed as a strategy to increase the efficiency and the flexibility of BS-based crop production strategies under variable environmental conditions. Moreover, MCP application aims at the restoration of plant-beneficial, soil biological processes disturbed by soil degradation and intensive use of agro-chemicals. This PhD thesis was initiated to characterize the modes of action and the potential advantages of a representative commercial MCP formulation over selected single strain PGPM inoculants, with documented effects on plant growth promotion and pathogen suppression. In total, nine pot and field experiments were conducted with three crops (maize, spring wheat, tomato) on seven different soils with three organic and inorganic fertilization regimes. Only in one out of nine experiments conducted in this thesis, clear evidence for superior MCP performance was detectable in a drip-irrigated tomato field experiment conducted under the challenging environmental conditions of the Negev desert in Israel (Bradáčová et al., 2019c). This finding demonstrates that MCP inoculants can exhibit an advantage over single strain inoculants but not as a general feature. Selective interactions with the type and dosage of the selected fertilizers, as well as avoidance of inhibitory effects on root growth during MCP rhizosphere establishment, have been identified as critical factors. A further characterization of the conditions, promoting beneficial plant-MCP interactions is mandatory for a more targeted and reproducible MCP application.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy