Browsing by Subject "Oenology"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Impact of oxygen on quality of white wine(2013) Morozova, Ksenia; Schwack, WolfgangToday?s wine market is becoming more and more saturated. At given conditions, the understanding of the consumer needs and preferences determines the success of a wine producer. The value of white and rosé wines appreciated by the consumers lies in their fruity and fresh character. Wine oxidation is one of the major wine failures. Recently, it has been reported that up to 48% of the wines rated as faulty by judges in wine competitions exhibited off-flavours that can be linked to the erroneous management of oxygen. Wine exposure to oxygen is possible throughout the whole winemaking process and depends on process conditions and applied equipment. Oxygen can be dissolved in wine up to 8.8 mg/L at normal conditions. After dissolution, oxygen concentration in liquid phase is normally decreasing to undetectable content due to chemical reactions of molecular oxygen with other wine constituents. Wine oxidation is a complex process. The effects may vary significantly influenced by numerous factors, including a type of wine, operation, oxygen amount chemical composition of wine, pH, storage temperature, light exposure, metal content and redox state of wine. Oxygen has a potential to support positively, and subsequently to ruin aroma and colour of wine. Most white wines are negatively affected by small amounts of dissolved oxygen provoking rapid aroma loss and oxidative browning, thus decreasing attractiveness for consumers, whereas in red wines microoxygenation may help to stabilise wine colour and remove reductive off-flavours. Up to now, most of the research on wine oxidation was focused on experiments in model solutions. Although these studies deliver valuable information about oxidation mechanisms, there was, however, limited data published on real wine experiments linking analytical data and sensory analysis. Consequently, the background of the present investigations was comprehensive evaluation of the effectiveness of the various factors influencing wine oxidation in real wine medium, and finally the development of innovative strategy for quality improvement and shelf-life extension of white wines. Comparison of different methods for O2 and CO2 measurement in wine The initial part of the present work was to determine a reliable quantification method for dissolved oxygen quantification in wine medium. Since dissolved carbon dioxide present in wine may influence the oxygen concentration, its amount should also be taken into account. Thus, development of dissolved carbon dioxide determination was of major importance for the further experiments described in this thesis. The main aim of the first study was to give a review of the oxygen and carbon dioxide measurement principles and to compare several instruments for carbon dioxide and oxygen measurement in wine available in the market. For carbon dioxide determination, CarboQC, Orbisphere 3658 and agitation cylinder were used. Oxygen measurements were conducted with PreSens, OxyQC and Orbisphere 3650. Sample bottles were prepared with concentrations in the range from 0 to 2200 mg/L for carbon dioxide and from 0 to 12 mg/L for oxygen, respectively, dissolved in white wine of Müller Thurgau variety. O2 and CO2 measurements with six instruments were sequentially conducted at 20°C after 10 minutes shaking of trial bottles. Subsequently calculated concentrations of oxygen and carbon dioxide were used for correlation regression tests. From the data obtained for CO2, three investigated instruments showed good repeatable measurement results (R2=98%) in the range from 0 to 1500 mg/L. However, in the wine samples oversaturated with CO2 (>1500 mg/L at 20°C) CarboQC and Orbisphere 3658 showed significantly higher precision (R2=99%), compared to the agitation cylinder, due to carbon dioxide losses during filling of the cylinder. As for oxygen data, results obtained with each of the measurement devices (PreSens, OxyQC and Orbisphere 3650) demonstrated good correlation with the initial oxygen amount in wine samples (R2=98%) in the whole monitored range of dissolved oxygen concentrations. However, due to the flexibility of PreSens mini-sensor application inside the bottle and noninvasive measurement, this technique was found to be more advantageous, compared to the other two. Additionally, it allowed not only determination of dissolved oxygen, but also of the gaseous oxygen concentration in a bottle headspace. For these reasons, the PreSens device was chosen for further experiments. Effect of Headspace Volume and Iron and Copper Addition on Oxidation Processes in Model Solution and Riesling Wine: Chemical and Sensory Changes Since previous studies in model solutions published by other authors clearly showed the key role of iron and copper in oxidation reactions in wine, the main aim of this part of the thesis was to compare the effects of oxygen and iron and copper additions on oxygen consumption rate, sulphur dioxide and colour of bottled model solution and actual wine with similar properties. Model solution was prepared of deionised water, glycerol, (+)-tartaric acid, ethanol, gallic acid and potassium metabisulfite to reach a free sulphur dioxide concentration of 50 mg/L. 200 L Riesling wine (vintage 2010) was prepared using standard winemaking techniques and equipment, and was subsequently treated with potassium ferrocyanide to eliminate iron and copper. Model solution and Riesling wine were bottled in 500 mL bottles with and without small additions of iron (0.1 mg/L) and copper (0.05 mg/L). Oxygen concentration in bottles was adjusted using various headspace volumes (0, 50 and 100 mL for model solution, and 0, 20 and 40 mL for Riesling, respectively) full of ambient air. Iron and copper concentration, total consumed oxygen, sulphur dioxide, browning rate (E420) were monitored. Additionally, sensory analysis of bottled Riesling wines (triangle tests and descriptive analysis) was conducted after 90 and 240 days of storage. The results revealed major differences between model solution and real wine. In model solution the headspace volume and the metal addition contributed to significant changes in total consumed oxygen, colour, and free sulphur dioxide. The metal addition increased the rate of the molecular oxygen consumption and resulted in elevated consumption of free SO2. Enhanced colour was observed in all wines, where iron was added. The experiment with Riesling wine with similar parameters showed strong influence of the headspace volume. The rate of oxidative browning and oxygen consumption rate strongly correlated with the headspace volume at the bottling. In contrast to model solution experiment, addition of small concentrations of iron and copper did not contribute to the colour and oxygen consumption rate of Riesling wine. Sensory analysis showed that the wines bottled with 0, 20 mL and 40 mL HS volume became significantly different already after three months of storage at 15°C, which was proved by the triangle tests. Descriptive analysis after six and nine months of storage confirmed negative influence of headspace volume, thus proving the significance of oxygen ingress at bottling on wine quality. Moreover, traces of metals in Riesling wines even in the wines with no iron and copper addition were sufficient to initialise oxidation processes. However, since small iron and copper additions had significant impact on model solution, further studies with Riesling wine needed to be conducted. The Impact of Headspace Oxygen and Copper and Iron Addition on Oxygen Consumption Rate, Sulphur Dioxide Loss, Colour and Sensory Properties of Riesling Wine For further investigation of the impact of iron and copper on white wine oxidation, Riesling wine was bottled with the addition of 1 mg/L of iron and 0.5 mg/L of copper, which correspond to average iron and copper concentrations in wines of Baden-Württemberg. Oxygen concentrations were determined, as previously reported, by the headspace volume in the bottle (0 mL, 10 mL and 20 mL) full with ambient air. In contrast to the previous experiment, addition of 1 mg/L of iron and 0.5 mg/L of copper had significant influence on the oxygen consumption rate, on the loss of free SO2 during storage, and on the sensory changes in wine. Addition of iron and copper significantly catalysed the oxygen consumption. Free sulphur dioxide loss was found to be proportional to the total consumed oxygen after bottling. Moreover, in all wines with iron and copper addition free sulphur dioxide decay was significantly elevated compared to wines with no iron and copper addition. Although colour changes were not observed in wines after 90 days of storage, significant sensory changes were detected. Both oxygen and iron and copper addition made an impact on sensory evaluation of wines. At low oxygen concentration (0 mL headspace) metal addition had positive effect resulting in elimination reduced aromas. In contrast, for 10 mL and 20 mL headspace, wines with iron and copper addition showed lower scores in fruity, citrus, tropical aromas, and elevated scores in untypical aging and had pronounced oxidised character. The results of the study indicate that, in the case of Riesling wine, excessive oxygen exposure due to oxygen present in the headspace of the bottle should be avoided. Moreover, iron and copper concentration also seems to make significant impact on oxygen and SO2 consumption rates and on sensory perception of wines. These findings suggest that iron and copper concentrations should also be taken into account, when oxygen management strategy is defined. Effect of Headspace Volume, Ascorbic Acid and Sulphur Dioxide on Composition and Sensory Profile of Riesling Wine In the last part of the present work the effects of different oxygen and free SO2 levels, and ascorbic acid addition on the development of white wine were investigated. Riesling wine was bottled in 500 mL bottles with four different headspace volumes (0 mL, 10 mL, 20 mL, 30 mL), two levels of free SO2 (50 mg/L and 70 mg/L), and with and without ascorbic acid (250 mg/L) addition. Dissolved oxygen and the oxygen in headspace were measured in the resulting 17 wines. Free and total SO2 concentrations, ascorbic acid concentration, colour, redox potential, and antioxidative capacity were measured regularly in wine samples. After six months of storage, the wines were evaluated using sensory descriptive analysis. It was again proved that wine exposure to oxygen at bottling plays a key role in white wine development during storage. High oxygen ingress may greatly influence the redox state of wine and affect the important quality parameters including colour, free and total SO2, and the overall sensory quality of wine. Free and total sulphur dioxide loss and the decline in ascorbic acid could be linked to the total consumed oxygen content. It was observed that in the presence of ascorbic acid less sulphite was consumed. Ascorbic acid addition also contributed to the fruity and fresh character of the bottled wines, which indicates its strong antioxidant. However, when combined with high oxygen concentration, ascorbic acid addition promoted enhanced white wine browning. This was scavenged in the wines with higher free SO2 concentrations. Based on the data shown, careful control of the oxygen ingress during bottling is crucial for white wine quality. Ascorbic acid addition seems to have positive sensory effects on the development of wines during the post-bottling period. However, the possible wine browning, associated with ascorbic acid, should be taken into account. On the contrary, sulphur dioxide, in case of the Riesling wine studied, seems to be less effective to prevent negative sensory effects in wines due to excessive exposure to oxygen, but may simultaneously decrease oxidative browning in wines with ascorbic acid addition. In summary, low oxygen ingress at bottling combined with low iron and copper concentrations, moderate additions of ascorbic acid and sulphur dioxide seem to be a good oxygen management strategy and offer a good potential to improve quality and extent the shelf-life of white wines.