Browsing by Subject "Nutrients"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Comparing meat and meat alternatives: An analysis of nutrient quality in five European countries(2023) Petersen, Thies; Hirsch, StefanObjective: To assess and compare the (macro-)nutritional composition of red meat (RM) and poultry meat (PM) products with the emerging category of meat substitutes. Design: We use information on nutritional values per 100 g to estimate the differences in the nutritional composition between RM, PM, vegan meat substitute (VMS) and non-vegan meat substitute (NVMS) and derive six unique meat product clusters to enhance the comparability. Setting: Meat markets from five major European countries: France, Germany, UK, Italy and Spain. Participants/Data: Product innovation data for 19 941 products from Mintel’s Global New Product Database from 2010 to 2020. Results: Most of the innovations in the sample are RM products (55 %), followed by poultry (30 %), VMS (11 %) and NVMS (5 %). RM products exhibit a significantly higher energy content in kcal/100 g as well as fat, saturated fat, protein and salt all in g/100 g than the meatless alternatives, while the latter contain significantly more carbohydrates and fibre than either poultry or RM. However, results differ to a certain degree when products are grouped into more homogeneous clusters like sausages, cold cuts and burgers. This indicates that general conclusions regarding the health effects of substituting meat with plant-based alternatives should only be drawn in relation to comparable products. Conclusions: Meat substitutes, both vegan and non-vegan, are rated as ultra- processed foods. However, compared with RM products, they and also poultry products both can provide a diet that contains fewer nutrients-to-limit, like salt and saturated fats.Publication Efficiency and productivity in pig nutrition(2011) Mosenthin, RainerThe efficient use of feed ingredients in diets for pigs is an important determinant of the productivity in modern pig production systems. Thus, there is a need to accurately estimate the feeding value of various feed ingredients. Several factors have to be considered for the adequate nutritional evaluation of feedstuffs. These include information (i) on the content of energy yielding nutrients (e.g. starch, sugars, lipids, protein), (ii) the digestibility and post absorptive utilization of nutrients, in particular indispensable amino acids, (iii) the physico-chemical characteristics (e.g. solubility, viscosity) of feedstuffs, but also (iv) potential effects of feed ingredients on pigs? voluntary feed intake and (v) effects of specific feed ingredients on animal product quality (e.g. fatty acid composition) need to be identified. Moreover, so called anti-nutritional factors (ANF?s) have been recognized as important factors that may negatively affect efficiency and productivity in pig nutrition. Some of the most important ANF?s present in feedstuffs which are frequently used in pig nutrition will be addressed in greater detail in the following. The EU-wide ban on the use of protein from animal sources in 2001 contributed to an increased demand for plant protein sources in the feeding of livestock. However, most protein-rich feedstuffs of plant origin contain various kinds of ANF?s that interfere with the utilization of nutrients, thus limiting their use particularly in the nutrition of non-ruminant animals such as pigs and poultry. As a result, depressions in growth performance and animal health due to a variety of mechanisms including reducing protein digestibility, binding to various nutrients or damaging the intestinal wall, thereby lowering digestive efficiency, were observed. Major ANF?s that interfere with nutrient digestion and absorption in non-ruminants include protease inhibitors, lectins, tannins, alkaloids, pyrimidine glycosides, α-galactosides, glucosinolates, and sinapins. The type and content of these ANFs may vary considerably among different feedstuffs, moreover, many feedstuffs contain several ANFs, and the amount of ANFs may vary both between and within varieties, due to differences in plant?s growing conditions and genetics. Protease inhibitors and lectins are most significant for legume seeds (soybeans, peas, faba beans, lupins), tannins are present in rapeseed, faba beans and peas, whereas glucosinolates and sinapins dominate in rapeseed. Finally, alkaloids and α-galactosides are important in lupins, and pyrimidine glycosides can generally be found in faba beans. However, due to significant progress in plant breeding, grain legume and oilseed cultivars with negligible low contents of ANF?s are commercially available. Moreover, the application of refined processing technologies designed to reduce the content of ANF?s in feedstuffs has proven to be an efficient tool. In particular, the use of hydrothermal treatment procedures during feed processing substantially reduces the activity of several heat-labile ANFs such as lectins and protease inhibitors but contents of tannins and glucosinolates are diminished as well.Publication Intensive pig production and manure management in Beijing, North China Plain(2014) Mendoza Huaitalla, Roxana; Gallmann, EvaChina, at the forefront of the livestock revolution, has experienced a more industrialized change, with an increment of the large livestock farms and of the decoupling between the livestock and arable land. Meat production in China is dominated by pork, which comprises approximately 50% of worldwide pig production. The description of the pig husbandry and manure management systems in the large animal operations of the NCP is not widely available. In order to describe the status quo of the pig production and manurial management systems in the NCP, a large-size pig farm with a dimension of 10 ha and an annual stock of 12,000 breeding swine and 20,000 market pigs or porkers was selected. An intensive sampling plan as far as feasible of pig manure, wastewater, drinking water, and feed, the main pig farm inputs and outputs, was started in 2009. The manurial system identified in the farm was denominated as “gan qing fen” or “cleaning the manure dryly”. In this system, the pig manure (faeces with some remains of urine) was collected manually by scraping the mainly non-slatted floors of the pigsties twice a day, and the floors were then flushed with water. The results showed that the pig manure was characterized by high nutrient and heavy metal contents that might be due to the solid fraction separation from the liquid fraction under the gan qing fen manurial management system. The piggery wastewater was characterized by very low concentrations of nutrients and heavy metals as a result of their dilution with flushing water, mainly used for cleaning the pigsties. Manure and wastewater samples from weaning pigs contained the highest concentrations of nutrients and heavy metals; that could be due to the high supplementation rates of these minerals in the weaner diets. In general, it seems that the manual daily collection of pig manure in the gan qing fen system is an efficient practice in order to maintain nutrient contents in pig manure, but the use of flushing water should be reduced as it can lead to further environmental pollution. China has issued a range of environmental standards in recent years. The Chinese national standards are adoptions of international standards and are consistent across all of China. Chinese and German recommendations were compiled in order to compare them with the results obtained in this study. Based on the comparisons, it is stated that pig drinking water sourced from groundwater wells was of optimum quality as it is used for both pigs and humans. Trace minerals in pig feeds, such as lead (Pb), chromium (Cr) and cadmium (Cd), were found to be within the range of values given by the Chinese and German feeding recommendations. However, high mineral concentrations of zinc (Zn), manganese (Mn), copper (Cu), and arsenic (As), mainly found in the weaning feed samples, surpassed the given thresholds by almost ten times. Pig manure was compared with the German and Chinese standard for biowaste due to the nonexistence of a specific standard for animal manure in both countries. It was observed that maximum Cd, Cu and Zn concentration values surpassed the thresholds established in those recommendations. Similarly, trace mineral concentrations in the piggery wastewater were compared with the Chinese standard for irrigation water, however, it was not compared with any German standard due to the different nature of the effluent generated from the Chinese gan qing fen manurial management system, and it was found that Pb, Cd, Cr, Cu, and Zn did not comply with the irrigation water quotes. Furthermore, there is a need to re-evaluate the current Chinese standards and to strengthen the recommendations focused on the disposal, reuse and recycling of manure and wastewater of livestock origin in general. In order to evaluate the air pollutants produced in the pig farm, i.e. gas concentrations of carbon dioxide (CO2) and ammonia (NH3), and particulate matter, were measured making use of four different measurement devices. High dust concentrations were identified in the pig barns, especially during the feeding and manure cleaning events inside the farrowing and weaning barns with slatted floors. The highest NH3 concentration was recorded in the weaning barn during the summer season, while the highest CO2 concentration was reported in the gestation barn during the winter season. To conclude, using the example of an intensive pig farm near Beijing, it was identified that the main issues were the decoupling between the cropland and the pig farm, the existence of nutrient surpluses in the pig manure originating from the uncontrolled nutrient supply into the pig feeds, the manure mismanagement (open manure storage), a lack of infrastructure (broken curtains, windows, inoperative fans), aerial pollutants (high indoor concentrations of CO2, NH3 and PM1-10), extensive hand labour, and obsolete know-how with respect to resource conservation, among the most significant.Publication Nutrient seed treatments to improve abiotic stress tolerance in Brassica napus L.(2020) Mahmood, Asim; Neumann, GünterPoor germination and limitations during early plant growth are widespread constraints for oilseed rape (OSR; Brassica napus L.) with increasing importance due to a rising frequency of weather extremes related with global climate change. In this study, efforts have been made to improve health and stress resistance of OSR by exploring perspectives of cost-effective application techniques for micronutrients with stress- protective functions to cover increased demands of these nutrients under stress conditions. After preliminary screening experiments, special emphasis was placed on zinc (Zn) seed treatments including seed priming (SP) and seed dressing (SD). Effects on seedling performance during early growth were recorded at optimal conditions for plant growth in terms of temperature, nutrient and water supply and also under drought stress for winter OSR and under low root zone temperature (RZT) stress in spring OSR. Accordingly, both, ZnSP and ZnSD may offer practical, economically low-cost application methods to improve early seedling establishment particularly under challenging environmental conditions, to improve the perspectives for conversion into higher economic yields and could be equally attractive for small-scale on-farm use and rape seed industry.Publication Nutritional regulation of DNA methylation and gene expression in maize(2018) Mager, Svenja; Ludewig, UweDNA methylation in plants plays a role in transposon silencing, genome stability and gene expression regulation. Environmental factors alter the methylation pattern of DNA and recently nutrient stresses, such as phosphate starvation, were shown to alter DNA methylation. DNA methylation had been frequently addressed in plants with notably small genomes that are poor in transposons. Here, part of the DNA methylome of nitrogen-, phosphorus- and zinc-deficient (-N, -P and -Zn, respectively) maize roots were compared by reduced representation sequencing and their relationship with gene expression under prolonged stresses analyzed. Tremendous DNA methylation loss was encountered in maize under nitrogen and zinc deficiency, but much less under phosphorus deficiency. This occurred only in the symmetrical cytosine contexts, predominantly in CG context, but also in the CHG context. In contrast to other plants, differential methylation in the more flexible CHH context was essentially absent. For each sample, specific nutrient deficiency-regulated genes were differentially expressed. In -Zn samples the lowest number of differentially expressed genes was found while -N and -P samples contained a similar number of differentially expressed genes. For all samples, differentially methylated regions (DMRs) were predominantly identified in transposable elements (TEs). A minor fraction of such DMRs was associated with altered gene expression of nearby genes in -N and -P. Interestingly, although these TEs were mostly hypomethylated, they were associated with both upand down-regulated gene expression. For -Zn, these associations were not found but a correlation between hypomethylation of gene bodies and expression of some genes. Here again, hypomethylation occurred with up- and downregulation of gene expression. The results suggested a different methylome regulation in maize compared to rice and Arabidopsis upon nutrient deficiencies indicating a nutrient- and species-specific association of genomic DNA methylation and gene expression. The limited correlation between differential DNA methylation and gene expression suggested that heritable regulation of the expression of nutrient deficiency-regulated genes was not the primary function of the methylation loss. Rather, the major function of the DNA methylation loss in this experiment may have been to increase the genetic diversity in the next generation by increased frequency of recombination events, mutations and transposable element movements.Publication Phosphate turnover during anaerobic digestion of chicken, pig and dairy manure(2023) Dinkler, Konstantin; Müller, JoachimPhosphate (P) is used extensively in agriculture. This has led to a reliance on P imports. Meanwhile, the framework for fertilization with digestate and manure in the European Union has become more stringent in recent years. Therefore, nutrients should be recovered as fertilizer to reduce dependencies, redistribute nutrient and amplify the product portfolio of biogas plants. Current nutrient recovery processes have in common that they are post digestion treatments of digestate, which neglect the phosphate behavior during digestion. It is necessary to closely evaluate P behavior during AD to optimize post digestion treatments of digestate by using digestion as a pretreatment for digestate. Therefore, it was the overall objective of this work to evaluate the turnover of P during anaerobic digestion in laboratory scale batch and continuous digestion systems. In laboratory experiments with batch reactor systems three different manures, namely pig, dairy and chicken manure were digested. Activated sludge served as inoculum. A set of 120 mL batch digesters were filled and individual bottles were opened after defined times and discarded afterwards until the last reactors were opened on day 30. The results showed that H2O-P and NaHCO3-P decreased over the digestion period by up to 40.1 %. Meanwhile, NaOH-P increased. Overall, it could be concluded that anaerobic digestion leads to a mineralization of P. The mineralization was especially profound during the first few days after the substrate was mixed with the inoculum, concluding that the ions in the inoculum played a significant role in this mineralization. In effect, AD reduces immediate plant availability but increases slow-release fertilization effects. During the batch experiments it was found that for a defined measurement wavelength for digestate the absorbance spectrum of digestate extracts needed to be analyzed and a drying temperature needed to be determined for sample treatment. For the evaluation of these two aspects samples were dried at 50°C and at 105°C and freeze dried. These samples and undried digestate were extracted by Hedley fractionation. The coloring agent was added to the extracts and the spectra between 600 nm and 1100 nm were measured. The spectral lines showed two peaks (709 nm and 889 nm). The lower wavelength proved to be more stable at low absorbance, making this the better wavelength for analysis. The analysis of the Hedley extracts showed that drying increases the H2O-P and NaHCO3-P fraction by up to 70 %. The samples were rinsed with preceding solvent to increase accuracy. Overall, the adapted method achieved higher accuracy for H2O-P, NaHCO3-P than the former method. The adapted fractionation was used for the analysis of samples during experiments in continuously stirred tank reactors. Chicken and dairy manure were each co-digested with straw and the parameters OLR and temperature were varied. The results showed that OLR had a negative correlation with H2O-P, which decreased by up to 50.49 %. Meanwhile, HCl-P increased significantly in chicken manure digestate, showing a positive correlation with OLR. It was proven that temperature has a minor effect on P transformation with a slightly higher mineralization of P under thermophilic conditions. Especially the high calcium concentration in chicken manure dominated the P turnover during the digestion, which can also be seen in the positive correlation of OLR with HCl-P as well as a high Pearson correlation coefficient above 0.85 for calcium and phosphate in chicken manure digestion. The results of this work have proven that P changes its chemical composition significantly during anaerobic digestion. The parameters of the digestion process had a decisive effect on the final composition with OLR and substrate composition being the major drivers. The results further showed that gas production and high P solubility are in conflict because for increased H2O-P OLR needs to be reduced. Future work should focus specifically on the combination of this anaerobic digestion and post-digestion treatments for cost effective recovery. This can play a key role for future profitability of biogas projects.