Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Maize (Zea mays)"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    High-resolution association mapping with libraries of immortalized lines from ancestral landraces
    (2021) Würschum, Tobias; Weiß, Thea M.; Renner, Juliane; Friedrich Utz, H.; Gierl, Alfons; Jonczyk, Rafal; Römisch-Margl, Lilla; Schipprack, Wolfgang; Schön, Chris-Carolin; Schrag, Tobias A.; Leiser, Willmar L.; Melchinger, Albrecht E.
    Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allantoinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines for studies using ancestral landraces for crop genetic research and breeding.
  • Loading...
    Thumbnail Image
    Publication
    Rapid cycling genomic selection in maize landraces
    (2025) Polzer, Clara; Auinger, Hans-Jürgen; Terán-Pineda, Michelle; Hölker, Armin C.; Mayer, Manfred; Presterl, Thomas; Rivera-Poulsen, Carolina; da Silva, Sofia; Ouzunova, Milena; Melchinger, Albrecht E.; Schön, Chris-Carolin
    Key message: A replicated experiment on genomic selection in a maize landrace provides valuable insights on the design of rapid cycling recurrent pre-breeding schemes and the factors contributing to their success. Abstract: The genetic diversity of landraces is currently underutilized for elite germplasm improvement. In this study, we investigated the potential of rapid cycling genomic selection for pre-breeding of a maize ( Zea mays L.) landrace population in replicated experiments. We trained the prediction model on a dataset (N = 899) composed of three landrace-derived doubled-haploid (DH) populations characterized for agronomic traits in 11 environments across Europe. All DH lines were genotyped with a 600 k SNP array. In two replications, three cycles of genomic selection and recombination were performed for line per se performance of early plant development, a major sustainability factor in maize production. From each cycle and replication, 100 DH lines were extracted. To evaluate selection response, the DH lines of all cycles and both replications (N = 688) were evaluated for per se performance of selected and unselected traits in seven environments. Selection was highly successful with an increase of about two standard deviations for traits under directional selection. Realized selection response was highest in the first cycle and diminished in following cycles. Selection gains predicted from genomic breeding values were only partially corroborated by realized gains estimated from adjusted means. Prediction accuracies declined sharply across cycles, but only for traits under directional selection. Retraining the prediction model with data from previous cycles improved prediction accuracies in cycles 2 and 3. Replications differed in selection response and particularly in accuracies. The experiment gives valuable insights with respect to the design of rapid cycling genomic selection schemes and the factors contributing to their success.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy