Browsing by Subject "Lignane"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Heterologe Expression und molekulare Charakterisierung des Dirigentproteins AtDIR6 aus A. thaliana(2011) Pickel, Benjamin; Schaller, AndreasDirigent proteins are involved in the stereo- and regioselective control of plant secondary metabolism. Functionally described dirigent proteins from Forsythia intermedia and Thuja plicata couple coniferyl alcohol radicals to (+)-pinoresinol, a precursor of various lignans including the pharmaceutically relevant podophyllotoxin. The discovery of (?)-lariciresinol in A. thaliana roots and the accumulation of its precursor (?)-pinoresinol in a knock-out mutant lacking two pinoresinol reductases indicated the presence of a novel dirigent activity in A. thaliana which mediates the enantiocomplementary formation of (?)-pinoresinol. In this work AtDIR6 was identified as a candidate for this novel dirigent activity. The protein was cloned and heterologously expressed in a plant cell culture system. The recombinant protein was purified to appearent homogeneity by conventional chromatography methods. The purified protein was functionally active and directed the coupling of coniferyl alcohol radicals to (?)-pinoresinol in vitro. It was further shown that the stereoselectivity of AtDIR6 is opposed to that of known dirigent proteins in F. intermedia and T. plicata, and therefore, AtDIR6 is the first of the long-sought nantiocomplementary dirigent proteins. AtDIR6 was shown to possess a N-terminal signal peptide, which was cleaved during secretion between amino acids 29 and 30. Mature AtDIR6 accumulated extracellularly and remained non-covalently attached to the primary cell wall of suspension cultured cells. The native protein is glycosylated with two complex type and paucimannosidic Nglycans, respectively. It forms homodimers of app. 42 kDa and shows a high content of b-sheets. The functionally described dirigent proteins are small proteins that are characterised by the ability to bind coniferyl alcohol radicals and couple them enantiospecifically without possessing a catalytic activity of their own. Sequence identity between different dirigent proteins may be low. In these aspects dirigent proteins are similiar to lipocalins. A sequence alignment with dirigent proteins and lipocalins shows that the lipocalin-specific sequence motive, which is part of SCR II, is conserved among all functionally described dirigent proteins. Structural and mechanistic features of AtDIR6 suggest that dirigent proteins may belong to the calycin superfamily, which also includes lipocalins, and that their threedimensional structure may be that of a b-barrel.Publication Selektive und effiziente Laccase-katalysierte oxidative Phenolkupplungen(2012) Constantin, Mihaela-Anca; Beifuss, UweThe oxidative phenolic coupling is one of the fundamental reactions of organic chemistry. In contrast to its major role in the biosynthesis of numerous natural compounds the oxidative phenolic coupling is only of little importance in organic synthesis so far. This is due to its frequent lack of regio- and stereoselectivity. Laccases are oxidases which can be employed, amongst others, for the catalysis of oxidative phenolic couplings using O2 as the oxidant. This study highlights three examples which clearly demonstrate that laccases can be used as catalysts for regio- and stereoselective oxidative couplings of phenolic compounds. The first example deals with the laccase-catalyzed oxidative dimerization of (E)-2-propenylsesamol to carpanone (a). The oxidative cyclization starts with a phenolic oxidation, which is followed by a radical coupling and an intramolecular hetero-Diels-Alder reaction. Experiments with laccases and a number of other catalysts indicate that the diastereoselectivity of the carpanone formation doesn´t depend on the nature of the catalyst but on the double bond geometry of the substrate. With (E)-2-propenylsesamol as the substrate, a 9:1-mixture of carpanone (a) and its diastereoisomer c was formed, irrespective of the catalyst used. When (Z)-2-propenylsesamol was used as the substrate, the formation of a 5:1:4-mixture of three diastereoisomers, i.e. a, c and d, was observed. When the oxidation of (E)-2-propenylsesamol with O2 as the oxidant was run in the absence of any catalyst the diastereoisomeric benzopyrans a and b were obtained in a 3:2-ratio. From a mechanistic point of view, this reaction proceeds as a Domino oxidation/intermolecular hetero-Diels-Alder reaction. The second example selected was the laccase-catalyzed oxidative coupling of sesamol, a naturally occurring phenolic antioxidant. Here, a so far unknown trimer was formed as the main product in good yield. Experiments with different catalysts indicated that the course of the oxidative coupling of sesamol depends strongly on the catalyst chosen. Finally, the laccase-catalyzed phenolic coupling of di- and trisubstituted vanillidene derivatives with O2 as the oxidant was studied. The dimerization of (E)-ferulic acid proceeded as a 8,8?-coupling with formation of a dilactone. When the disubstituted vanillidene derivatives were reacted, the diastereoselective formation of the racemic dihydrobenzo[b]furans which can be understood as the products of a 5,8?-coupling mode were formed. In contrast to the disubstituted vanillidene derivatives, the laccase-catalyzed reaction of the trisubstituted vanillidene derivatives exclusively yielded biphenyls as the result of a 5,5?-coupling.