Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Interaction rewiring"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Urbanization alters the spatiotemporal dynamics of plant–pollinator networks in a tropical megacity
    (2023) Marcacci, Gabriel; Westphal, Catrin; Rao, Vikas S.; Kumar S., Shabarish; Tharini, K. B.; Belavadi, Vasuki V.; Nölke, Nils; Tscharntke, Teja; Grass, Ingo
    Urbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant–pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant–pollinator interactions (interaction β-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant–pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant–pollinator interaction β-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant–pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant–pollinator networks and urbanization can strongly amplify these dynamics.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy