Browsing by Subject "Inflammasome"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Bacterial subversion of NLR-mediated immune responses(2022) Kienes, Ioannis; Johnston, Ella L.; Bitto, Natalie J.; Kaparakis-Liaskos, Maria; Kufer, Thomas A.Members of the mammalian Nod-like receptor (NLR) protein family are important intracellular sensors for bacteria. Bacteria have evolved under the pressure of detection by host immune sensing systems, leading to adaptive subversion strategies to dampen immune responses for their benefits. These include modification of microbe-associated molecular patterns (MAMPs), interception of innate immune pathways by secreted effector proteins and sophisticated instruction of anti-inflammatory adaptive immune responses. Here, we summarise our current understanding of subversion strategies used by bacterial pathogens to manipulate NLR-mediated responses, focusing on the well-studied members NOD1/2, and the inflammasome forming NLRs NLRC4, and NLRP3. We discuss how bacterial pathogens and their products activate these NLRs to promote inflammation and disease and the range of mechanisms used by bacterial pathogens to evade detection by NLRs and to block or dampen NLR activation to ultimately interfere with the generation of host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate immunotolerance and persistence in the host and outline how various mechanisms used to attenuate innate immune responses towards bacterial pathogens can also aid the host by reducing immunopathologies. Finally, we describe the therapeutic potential of harnessing immune subversion strategies used by bacteria to treat chronic inflammatory conditions.Publication Detection of bacterial membrane vesicles by NOD-like receptors(1996) Johnston, Ella L.; Heras, Begoña; Kufer, Thomas A.; Kaparakis-Liaskos, MariaPublication NOD-like receptors - emerging links to obesity and associated morbidities(2023) Bauer, Sarah; Hezinger, Lucy; Rexhepi, Fjolla; Ramanathan, Sheela; Kufer, Thomas A.Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.