Browsing by Subject "Green chemistry"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Continuous synthesis of 5‐hydroxymethylfurfural from biomass in on‐farm biorefinery(2022) Świątek, Katarzyna; Olszewski, Maciej P.; Kruse, Andrea5‐hydroxymethylfurfural (HMF) is the object of extensive research in recent times. The challenge in the industrial production of HMF is the choice of cheap, hexose feedstock. This study compares continuous HMF synthesis from hexoses—fructose and glucose, and biomass—Miscanthus × giganteus and chicory roots. The experiments were conducted in technical‐scale biorefinery (TRL 6/7). In the first stage, optimal conditions for the production of HMF from hexoses were selected using sulfuric acid as a catalyst in an aqueous medium. The following conditions were chosen for fructose: temperature of 200°C, the reaction time of 18 min, and pH = 2, and for glucose: 210°C, 18 min, and pH = 3. Under these conditions, the HMF yield was 56.5 mol% (39.6 wt.%) from fructose and 18.1 mol% (12.6 wt.%) from glucose. From the biomass, the HMF yields were 36.7 and 16.2 wt.% for miscanthus and chicory roots, respectively. Some results from the conversion of biomass solutions are unexpected and show a need for further investigations. This work has demonstrated the capacity to produce HMF from biomass as part of an environmentally friendly process in a biorefinery. Further research in this field and process optimization will be a step forward in the sustainable production of bioplastics.Publication Ingenious wheat starch/Lepidium perfoliatum seed mucilage hybrid composite films: Synthesis, incorporating nanostructured Dy₂Ce₂O₇ synthesized via an ultrasound-assisted approach and characterization(2025) Zinatloo-Ajabshir,Sahar; Yousefi, Alireza; Jekle, Mario; Sharifianjazi, FariborzIn this study, Dy₂Ce₂O₇ nanostructures were fabricated using an environmentally friendly, ultrasound-assisted method. These nanostructures were then incorporated into a blend of wheat starch (WS) and Lepidium perfoliatum seed mucilage (LPSM), along with sodium montmorillonite (Na-MMT) nanoparticles. The composite films were produced through a casting method, combining these components to enhance the films' structural and functional properties. FTIR results confirmed the chemical interactions between the NPs and the biopolymeric matrix of the nanocomposites. SEM surface morphology and XRD crystallography results indicated that up to a 1 % weight ratio, the dispersion of Dy₂Ce₂O₇ in the nanocomposite matrix was uniform, while at higher percentages, due to nanoparticle aggregation, crystallinity increased. Interestingly, the elongation of nanocomposites containing Dy₂Ce₂O₇ increased, while their tensile strength and elastic modulus decreased. More than 92 % of UV radiation in the 240–360 nm range was absorbed with the inclusion of 1 % wt. Dy₂Ce₂O₇, and the water vapor permeability (WVP) significantly decreased. Among the Dy₂Ce₂O₇-based nanocomposites, TGA results showed that the WS/LPSM/MMT/Dy1 % sample had the highest thermal stability. Overall, based on the results of this study, the WS/LPSM/MMT/Dy1 % sample was introduced as a composite film with suitable physicochemical and mechanical properties for food and pharmaceutical packaging.