Browsing by Subject "Genotoxicity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Almond-like aroma formation of acid whey by Ischnoderma benzoinum fermentation: potential application in novel beverage development(2025) Hannemann, Lea; Klauss, Raphaela; Gleissle, Anne; Heinrich, Patrick; Braunbeck, Thomas; Zhang, Yanyan; Hannemann, Lea; Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, Stuttgart, Germany; Klauss, Raphaela; Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21, Stuttgart, Germany; Gleissle, Anne; Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21, Stuttgart, Germany; Heinrich, Patrick; Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, Germany; Braunbeck, Thomas; Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, Germany; Zhang, Yanyan; Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, Stuttgart, GermanyTo address the sourish off-aroma of acid whey and enhance its upcycling, a new basidiomycete Ischnoderma benzoinum -mediated fermentation system was developed using pure acid whey as the sole substrate. A pleasant sweetish and marzipan-like odor was perceived after fermentation within 7 d at 24 °C in darkness, which was shaped from key contributors including 4-methoxybenzaldehyde (odor activity value (OAV) 878), 3-methylbutanal (OAV 511), 3,4-dimethoxybenzaldehyde (OAV 50), and benzaldehyde (OAV 28). The typical sweetish and almond-like odor persisted well after ultrahigh-temperature processing, though its intensity decreased slightly. Concurrently, the fermentation reduced lactose from 52 to 20 g/L but increased the contents of essential amino acids like threonine, leucine, and lysine. No significant cytotoxicity or genotoxicity differences were found between fermented and unfermented whey. Overall, the study highlights the capability of I. benzoinum fermentation to enhance the flavor of acid whey, offering a promising approach for creating nutritional and flavorful acid-whey-based products.Publication Comparison of aqueous and lactobacterial-fermented Mercurialis perennis L. (Dog’s Mercury) extracts with respect to their immunostimulating activity(2023) Lorenz, Peter; Zilkowski, Ilona; Mailänder, Lilo K.; Klaiber, Iris; Nicolay, Sven; Garcia-Käufer, Manuel; Zimmermann-Klemd, Amy M.; Turek, Claudia; Stintzing, Florian C.; Kammerer, Dietmar R.; Gründemann, CarstenLactic acid (LA) fermentation of dog’s mercury (M. perennis L.) herbal parts was investigated in samples inoculated with either Lactobacteria (Lactobacillus plantarum and Pediococcus pentosaceus, LBF) or whey (WF). Depending on fermentation time, LA concentrations were monitored in a range of 3.4–15.6 g/L with a concomitant pH decline from 6.5 to 3.9. A broad spectrum of cinnamic acids depsides containing glucaric, malic and 2-hydroxyglutaric acids along with quercetin and kaempferol glycosides were detected by LC-DAD-ESI-MSn. Moreover, in this study novel constituents were also found both in unfermented and fermented extracts. Furthermore, amino acids and particular Lactobacteria metabolites such as biogenic amines (e.g., putrescine, 4-aminobutyric acid, cadaverine) and 5-oxoproline were assigned in WF extracts by GC-MS analysis after silylation. Enhanced NFκB and cytokine expression (IL-6, TNFα, IL-8 and IL-1β) was induced by all extracts, both non-fermented and fermented, in NFκB-THP-1 reporter cells, showing a concentration-dependent immunostimulatory effect. The WF extracts were tested for micronuclei formation in THP-1 cells and toxicity in luminescent bacteria (V. fischeri), whereby no mutagenic or toxic effects could be detected, which corroborates their safe use in pharmaceutical remedies.