Browsing by Subject "Cryo-EM"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Functional and structural studies of a C-terminally extended YidC(2015) Seitl, Ines; Kuhn, AndreasMembers of the YidC/Oxa1/Alb3 protein family catalyze the insertion of integral membrane proteins into the lipid bilayer of the bacterial plasma membrane (YidC), the inner mitochondrial membrane (Oxa1), and the chloroplast thylakoid membrane (Alb3) (Saller et al., 2012; Dalbey et al., 2014). The insertase homologs are comprised of a conserved core region of 5 transmembrane domains, but are provided with additionally flanking N- and C-terminal regions of variable lengths and functions. The Gram-negative YidC is characterized by an additional N-terminal domain, while Gram-positive bacteria, mitochondria and plastids developed C-terminally extended insertase-domains. These domains are involved e.g. in direct interaction with ribosomes and facilitate a functional overlap with the co-translational SRP-targeting pathway. An extended C-terminal highly positively charged tail region was also found in the YidC homologs of the Gram-negative marine bacteria Rhodopirellula baltica and Oceanicaulis alexandrii, but not in Escherichia coli. The primary subject of this work was to characterize and analyze in detail the C-terminally extended YidC chimera, composed of the E. coli YidC and the C-terminally extended domains of the marine YidC homologs. Biochemical binding assays with the purified YidC proteins and isolated, vacant E. coli 70S ribosomes showed that the C-tails mediate specific binding to ribosomes independently of the translational state of the ribosome. Furthermore, a ribosome-bound insertase complex was visualized by cryo-electron microscopy. The enhanced affinity of the C-terminally extended YidC was used to isolate stable complexes with stalled ribosomes, carrying a nascent polypeptide chain of a YidC substrate protein (MscL). The cryo-EM structure of a YidC-ribosome nascent chain complex (RNC) was solved to a 8,6 Å resolution and allowed the visualization of the nascent chain from the peptidyl transferase center through the ribosomal exit tunnel into the YidC density. The structure revealed the helix H59 of the 23S rRNA and the two ribosomal proteins L24 and L29 as the major contacts sites of YidC at the ribosomal tunnel exit. Pull down assays confirmed a significantly interaction of the C-terminal ribosome binding domain and the ribosomal protein L29, while L24 seems to be a universal contact site for the YidC-insertase core domain. Strikingly, the cryo-EM structure clearly showed a single monomer of YidC bound to the translating ribosome. This suggests that monomeric YidC might be the minimal functional unit for YidC-dependent, co-translational insertion of inner membrane proteins. In addition to the in vitro tests, a possible role of the C-terminal YidC extensions in co-translational protein targeting was tested in vivo in E. coli. For that purpose the targeting and localization of the SRP-dependent YidC-substrate protein MscL (Facey et al., 2007) was investigated as a GFP fusion protein via fluorescence microscopy. In addition, the proper membrane insertion of MscL was analyzed in radioactive pulse chase experiments via AMS gel shift assays, either in the absence of a functional SRP or SRP receptor (FtsY). Both in vivo assays clearly showed that the C-terminal ribosome binding domain of the R. baltica YidC homolog can partially substitute for the SRP receptor function in E. coli, while the cytosolic signal recognition particle is still required for correct insertion of the MscL protein. Therefore, a new co-translational targeting and insertion model of YidC-only substrates was proposed. This works also highlights evolutionary aspects of the accessory YidC domains and indicates that the C-terminal extended tail of YidC in the planctomycete group may be an ancestral remnant of a primordial translocation system operating without a typical SRP receptor. The second part focuses on the interaction of the signal recognition particle with SRP signal sequences. Isolated mutant signal sequence peptides were used to determine the specificity of SRP recognition in proteins. The interaction studies were established in an in vitro system and binding affinities of purified SRP to the isolated signal sequence peptides were determined via microscale thermophoresis (MST). A short sequence of 27 amino acid residues at the very N-terminal tail of the large cytoplasmic domain of KdpD was identified as a SRP signal sequence. Furthermore, a direct influence of the amino acid composition in the signal peptide on its SRP binding affinity in vitro was demonstrated. This confirms a low influence of an altered charge in the N-terminal region while mutations in the hydrophobic core region causes significantly reduced binding affinities to SRP. Taken together, this study contributes to the understanding of the molecular mechanisms of co-translational membrane protein biogenesis in bacteria.