Browsing by Subject "Circular economy"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Characterisation of biogas digestate as raw material for fibre composites(2022) Gebhardt, Marion; Lemmer, AndreasVarious synthetic fibres and natural fibres are used as reinforcing fibres in the fibre composite industry. Efforts towards sustainable products and the avoidance of land-use competition are increasingly driving the search for alternatives. Biorefineries are one possible solution. Biogas plants process structurally rich plant-based biomass. The resulting digestates have already been partially degraded. Natural reinforcement fibres are extracted chemically or biologically from plants, the use of digestates is obvious. This paper deals with the question whether biogas digestate can be used as a fibre raw material for composite materials. Digestates from four different commercially operated biogas plants in Germany are considered. Besides three biogas plants that utilize an average mix of animal excrement and plants one plant is operating solely plant-based. The solid portions of the fermentation residues were first examined regarding fibre quality. For this purpose, the fibre dimensions (fibre length and degree of slenderness) and the density of the fermentation residues were determined. Utilizing a feed analysis according to van Soest, the proportions of cell wall components were examined. The results of the investigations were compared with common fibres such as flax and wood. In addition to the properties, the possible fibre yield from the various fermentation residues was also considered. In this study, the influence of the starting substrates was considered in detail. For this purpose, the distribution of different size classes was first determined utilizing wet sieve analysis. These results were combined with the dry matter content. Digestates from a plant using exclusively plants as substrates, with a high proportion of hop vines, are considered separately. It is considered whether the additional washing of the fermentation residues brings an advantage for the fibre quality. To prove this thesis, the most common fibre properties are also examined and compared with wood fibres. These digestates from this biogas plant are used for the following investigations. Composite materials are often produced with a textile as reinforcement. Therefore, the digestate is first processed into a nonwoven. The wet laying technology is used, as it is suitable for various types of fibres. Only cellulose is used as a binding material so that the nonwoven is completely bio-based. The hot-press technology with a thermoset matrix is used to produce the composites. The matrix used is a partially bio-based epoxy resin system. The most suitable process parameters are determined with two test scenarios. In the first run, the proportion of added matrix is varied at constant pressure. In the second run, the pressure is varied at constant matrix content. Destructive and non-destructive material tests are carried out to check the material properties. To make a statement about a suitable application, the mechanical properties and the water absorption are of particular importance. In addition, the behaviour towards chemicals is examined to be able to assess the resistance of the material. For this purpose, the composite material is produced with the previously determined process parameters and immersed in various chemicals. Finally, the durability of the composite materials is examined. For this purpose, the composite material is also produced with the previously determined process parameters. An epoxy resin with a higher bio-based content is used as the matrix. The material is exposed to UV radiation and humid air for three months. Afterwards, the mechanical properties and water absorption are examined again. The main finding of the presented study is that the solid components of digestate can be processed into composite materials. The properties of the digestate fibres are similar to those of wood fibres. For the yield of digestate fibres, it is advantageous if only a small proportion of animal excrements is used as substrate in the biogas plant. Additional processing after fermentation leads to an increase in fibre quality. The hot-press-technology has proven to be a suitable process, as fully impregnated composites with reproducible properties can be produced. The process parameters determined are a pressure of at least 4:5MPa and a matrix addition of 60%, which corresponds to an excess of about 10%. The properties of the composites are comparable to Wood Plastic Composites. Therefore, they can be considered adequate. The durability is shown to be inadequate due to the strong reduction in mechanical properties after artificial weathering and chemical storage. The durability is mainly dependent on the matrix. Based on the results described, an application for the digestate composites as furniture material is recommended.Publication New sustainable banana value chain: Waste valuation toward a circular bioeconomy(2023) Krungkaew, Samatcha; Hülsemann, Benedikt; Kingphadung, Kanokwan; Mahayothee, Busarakorn; Oechsner, Hans; Müller, JoachimAccording to the needs of sustainability, a new sustainable banana chip value chain, which is a combination of the traditional banana chip value chain and the banana waste value chain, was designed. Scenarios were created assuming that an anaerobic digester would be implemented to produce biogas—which can act as a substitute for liquefied petroleum gas (LPG) used in banana processing—from banana wastes. The values of banana residues throughout the value chain were determined depending on farm gate tree price, transportation cost, and the final value of LPG substitution. The value chain was optimized using two objective functions: total chain profit maximization and factory profit maximization. The tree price at the farm gate was determined and assumed to be between USD 0.067 and USD 0.093 per tree, and the transportation cost of tree transportation was assumed to be between USD 0.31 and USD 0.39 per km. Different tree prices and transportation costs affected the profits of all stakeholders throughout the chain. The scenarios that maximized total chain profits showed superior environmental performance compared to the scenarios that maximized factory profits. The proposed sustainable value chain will lead to an increase in farmers’ profits of 15.5–17.0%, while the profits gained by collectors and factory will increase between 3.5 and 8.9% when compared to business as usual.Publication Perennial biomass cropping and use: Shaping the policy ecosystem in European countries(2023) Clifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; McCalmont, Jon; Whitaker, Jeanette; Alexopoulou, Efi; Amaducci, Stefano; Andronic, Larisa; Ashman, Christopher; Awty‐Carroll, Danny; Bhatia, Rakesh; Breuer, Lutz; Cosentino, Salvatore; Cracroft‐Eley, William; Donnison, Iain; Elbersen, Berien; Ferrarini, Andrea; Ford, Judith; Greef, Jörg; Ingram, Julie; Lewandowski, Iris; Magenau, Elena; Mos, Michal; Petrick, Martin; Pogrzeba, Marta; Robson, Paul; Rowe, Rebecca L.; Sandu, Anatolii; Schwarz, Kai‐Uwe; Scordia, Danilo; Scurlock, Jonathan; Shepherd, Anita; Thornton, Judith; Trindade, Luisa M.; Vetter, Sylvia; Wagner, Moritz; Wu, Pei‐Chen; Yamada, Toshihiko; Kiesel, AndreasDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.Publication The role of consumers in business model innovations for a sustainable circular bioeconomy(2023) Lang, Stephanie; Minnucci, Giulia; Mueller, Matthias; Schlaile, Michael P.Over the last decade, various governments and supranational bodies have promoted the development of a circular bioeconomy (CBE) as a response to sustainability challenges. The transition towards a CBE requires the collaboration of different actors in the innovation (eco)system. With this conceptual paper, we apply a circular business model lens to address the research question: “What are the archetypical roles of consumers in business model innovations for a sustainable CBE?” We use a combination of complementary theories from the circular economy and bioeconomy literature, evolutionary innovation economics, sustainability transitions research, the business model literature, and the work on active consumers. Considering consumers’ agency as a continuum between the manufacturer-active paradigm and the consumer-active paradigm, we propose: (i) consumers in the manufacturer-active paradigm can actively influence circular business models with their purchase decision; (ii) consumers can act as lobbyists and influencers for circular business model innovation; (iii) in their different roles as customer, user, repairer, and reseller, consumers can incentivize organizations to adapt their business models to their needs; (iv) consumers can become key partners in the process of defining the normative orientation of the innovation paradigm for a CBE; (v) consumers can actively co-create value by means of co-ownership (e.g., through platform cooperatives).