Browsing by Subject "Bacillus"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Publication Beneficial microbial consortium improves winter rye performance by modulating bacterial communities in the rhizosphere and enhancing plant nutrient acquisition(2023) Behr, Jan Helge; Kampouris, Ioannis D.; Babin, Doreen; Sommermann, Loreen; Francioli, Davide; Kuhl-Nagel, Theresa; Chowdhury, Soumitra Paul; Geistlinger, Joerg; Smalla, Kornelia; Neumann, Günter; Grosch, RitaThe beneficial effect of microbial consortium application on plants is strongly affected by soil conditions, which are influenced by farming practices. The establishment of microbial inoculants in the rhizosphere is a prerequisite for successful plant-microorganism interactions. This study investigated whether a consortium of beneficial microorganisms establishes in the rhizosphere of a winter crop during the vegetation period, including the winter growing season. In addition, we aimed for a better understanding of its effect on plant performance under different farming practices. Winter rye plants grown in a long-time field trial under conventional or organic farming practices were inoculated after plant emergence in autumn with a microbial consortium containing Pseudomonas sp. (RU47), Bacillus atrophaeus (ABi03) and Trichoderma harzianum (OMG16). The density of the microbial inoculants in the rhizosphere and root-associated soil was quantified in autumn and the following spring. Furthermore, the influence of the consortium on plant performance and on the rhizosphere bacterial community assembly was investigated using a multidisciplinary approach. Selective plating showed a high colonization density of individual microorganisms of the consortium in the rhizosphere and root-associated soil of winter rye throughout its early growth cycle. 16S rRNA gene amplicon sequencing showed that the farming practice affected mainly the rhizosphere bacterial communities in autumn and spring. However, the microbial consortium inoculated altered also the bacterial community composition at each sampling time point, especially at the beginning of the new growing season in spring. Inoculation of winter rye with the microbial consortium significantly improved the plant nutrient status and performance especially under organic farming. In summary, the microbial consortium showed sufficient efficacy throughout vegetation dormancy when inoculated in autumn and contributed to better plant performance, indicating the potential of microbe-based solutions in organic farming where nutrient availability is limited.Publication Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42(2022) Vahidinasab, Maliheh; Adiek, Isabel; Hosseini, Behnoush; Akintayo, Stephen Olusanmi; Abrishamchi, Bahar; Pfannstiel, Jens; Henkel, Marius; Lilge, Lars; Vögele, Ralf ; Hausmann, RudolfBacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.Publication Characterization ofantifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp(2023) Akintayo, Stephen Olusanmi; Hosseini, Behnoush; Vahidinasab, Maliheh; Messmer, Marc; Pfannstiel, Jens; Bertsche, Ute; Hubel, Philipp; Henkel, Marius; Hausmann, Rudolf; Vögele, Ralf; Lilge, LarsIntroduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.Publication Entwicklung und Validierung schneller und selektiver Verfahren zum Nachweis von Salmonella enterica, Cronobacter spp. und Bacillus cereus in Milcherzeugnissen(2014) Zimmermann, Jennifer; Schmidt, HerbertThe presence of pathogens is a serious problem in the food industry and contaminations of food with Bacillus cereus, Cronobacter spp. and Salmonella enterica are responsible for a large number of diseases worldwide. Milk products like milk, whey or cream powder are widely used in industry as an ingredient in other foods. Therefore it requires a fast and reliable identification of pathogenic microorganisms. The official methods according to § 64 LFGB or ISO/TS 22964 apply a common scheme of pre-enrichment, selective enrichment, detection and confirmation and take between three and six days. The aim of this work was the development and validation of a real-time PCR based method, which identifies the existence of the three pathogens in dairy products within 24 hours. The identification of B. cereus, Cronobacter spp. and S. enterica with the developed TaqMan real-time PCR was performed using specific genetic characteristics and an internal amplification control to eliminate false negative results. For B. cereus, the groEL gene, which codes for a heat shock protein, was selected as target. For the detection of Cronobacter spp. the ompA gene and for S. enterica the invA gene was chosen. Both genes are responsible for the invasion of the pathogens in the human epithelial cells. The adaptation of the method to the food matrix and an optimization of the enrichment time were affected by an artificial contamination of various dry dairy products. It was possible to detect 105 cfu/g C. sakazakii and S. Enteritidis cells with an initial concentration of 100 cfu/g in reconstituted powdered infant formula after enrichment of six hours. To simulate a natural contamination, powdered infant formula was contaminated with desiccated C. sakazakii cells in various concentrations and analyzed with the developed real-time PCR method. It was possible to detect an inoculum concentration of 0.01 CFU/g dry stressed C. sakazakii cells at low aw values (0.22). The new TaqMan real-time PCR is fast, reliable and specific for the clearly detection of the three major pathogenic microorganisms in milk products and was carried out within 24 hours.Publication Evaluation and method development for the biosynthesis of microbial lipopeptides by bacillus species(2023) Vahidinasab, Maliheh; Hausmann, RudolfMicrobial lipopeptides are secondary metabolites produced by bacteria and single-celled microorganisms. They consist of a cyclic or linear peptide chain linked to a lipid residue. Due to their high-foaming biosurfactant properties, they have various industrial applications such as in detergents, food emulsifiers, bioremediation, and enhanced oil recovery. Additionally, they possess other functional properties such as antifungal activity, making them an environmentally friendly alternative to synthetic fertilizers and fungicides. Bacillus species produce cyclic lipopeptides known for their potent antifungal activity, which makes them a potential source of bio-fungicides in agriculture. However, the production titer of wild-type Bacillus species does not meet industrial needs. Thereby, genetic modification of producer strains and bioprocess engineering can help increase the production of lipopeptides. Nevertheless, the regulation and basis of biosynthesis for Bacillus lipopeptides are still not completely understood, and ongoing research aims to enhance their production. In general, three main lipopeptide families, including surfactins, iturins, and fengycins are produced by different Bacillus species. Among these, surfactin as the strong biosurfactant is the most extensively studied lipopeptide produced by Bacillus species. The focus of this doctoral thesis was mainly to evaluate the biosynthesis of iturin and fengycin families, which are strong antimicrobial lipopeptides produced by Bacillus subtilis and Bacillus velezensis. This involved developing strains through genetic engineering and enhancing the lipopeptide titer by evaluating the cultivation medium. Initially, the entire genome of the bacteria used in this thesis was examined in terms of lipopeptide biosynthesis, and the structure and yield of the different produced lipopeptides were analyzed. Regarding the lipopeptide producer derivatives of the domesticated laboratory model strain B. subtilis 168 and B. subtilis 3NA, a spore deficient strain appropriate for bioreactor cultivation, surfactin is the lipopeptide with the highest yield, while plipastatin which is a member of fengycin family, is produced in lower quantities. In the present thesis, the biosynthesis of plipastatin by B. subtilis BMV9 as the lipopeptide producer derivative of strain 3NA was evaluated. The study aimed to convert BMV9 to a constitutive plipastatin mono-producer strain. In this sense, overexpressing plipastatin biosynthesis operon using the stronger constitutive Pveg promoter led to a five-fold increase in plipastatin production. Interestingly, it was observed that deletion of srfAA-AD operon in BMV9 and the constructed constitutive plipastatin producer strain has not improved plipastatin production. Therefore, it can be stated that presumably the biosynthesis of plipastatin may be positively influenced in a post-transcriptional manner by the surfactin synthetase or some of its subunits. However, the regulatory mechanism behind this effect remained unknown and requires further research. Another attempt to enhance the plipastatin biosynthesis in strain BMV9 was repairing the degQ expression. One main genome characterization of strains with B. subtilis 168 and 3NA background is that the pleiotropic degQ gene expression, which is known to have a positive effect on plipastatin biosynthesis, is silenced due to a mutation in the promoter area. However, while repair of degQ expression in BMV9 increased the plipastatin production, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) has not significantly increased the plipastatin yield. To further evaluate the impact of degQ expression on surfactin and plipastatin biosynthesis, two strains of B. subtilis were selected: JABs24, a lipopeptide producer derived from the 168 strain, and DSM10T, the wild-type strain expressing native degQ. The findings demonstrated that surfactin biosynthesis is negatively affected by DegQ-associated DegU regulation, while increased plipastatin biosynthesis is achieved in the presence of native degQ expression. In addition to production of lipopeptides, the DegU regulatory system also plays a role in the formation of secretory proteases. A comparison of extracellular protease activities between JABs24 and DSM10T showed that degQ expression led to DSM10T having five times higher protease activity than JABs24. Interestingly, production of extracellular proteases has not affected the stability of both plipastatin and surfactin during cultivation, suggesting that lipopeptides are less targeted by extracellular proteases. The identification of proficient wild-type strains is critical to the advancement of bio-fungicide in agriculture. Therefore, the subsequent approach of this thesis centered on the production of microbial lipopeptide by wild-type B. velezensis strains. Here, the lipopeptide productivity and antifungal ability of B. velezensis UTB96 was higher than B. velezensis FZB42, as a well-established strain for biocontrol of plant pathogens in agriculture. Furthermore, addition of certain amino acids stimulated lipopeptide production, and using a bioreactor system resulted in enhancement of lipopeptide production, especially iturin A by UTB96. Overall, the doctoral thesis evaluates the biosynthesis of antimicrobial lipopeptides produced by B. subtilis and B. velezensis. The study involves genetic engineering such as promoter exchange, deletion of genes involved in competing biosynthetic pathways and cultivation medium development with amino acid supplementation to enhance the lipopeptide titer. The thesis also identifies B. velezensis UTB96 as a promising candidate for further research to be used as a wild-type antifungal agent in agriculture.Publication Evaluation of an external foam column for in situ product removal in aerated surfactin production processes(2023) Treinen, Chantal; Claassen, Linda; Hoffmann, Mareen; Lilge, Lars; Henkel, Marius; Hausmann, RudolfIn Bacillus fermentation processes, severe foam formation may occur in aerated bioreactor systems caused by surface-active lipopeptides. Although they represent interesting compounds for industrial biotechnology, their property of foaming excessively during aeration may pose challenges for bioproduction. One option to turn this obstacle into an advantage is to apply foam fractionation and thus realize in situ product removal as an initial downstream step. Here we present and evaluate a method for integrated foam fractionation. A special feature of this setup is the external foam column that operates separately in terms of, e.g., aeration rates from the bioreactor system and allows recycling of cells and media. This provides additional control points in contrast to an internal foam column or a foam trap. To demonstrate the applicability of this method, the foam column was exemplarily operated during an aerated batch process using the surfactin-producing Bacillus subtilis strain JABs24. It was also investigated how the presence of lipopeptides and bacterial cells affected functionality. As expected, the major foam formation resulted in fermentation difficulties during aerated processes, partially resulting in reactor overflow. However, an overall robust performance of the foam fractionation could be demonstrated. A maximum surfactin concentration of 7.7 g/L in the foamate and enrichments of up to 4 were achieved. It was further observed that high lipopeptide enrichments were associated with low sampling flow rates of the foamate. This relation could be influenced by changing the operating parameters of the foam column. With the methodology presented here, an enrichment of biosurfactants with simultaneous retention of the production cells was possible. Since both process aeration and foam fractionation can be individually controlled and designed, this method offers the prospect of being transferred beyond aerated batch processes.Publication Exploration of surfactin production by newly isolated Bacillus and Lysinibacillus strains from food‐related sources(2022) Akintayo, Stephen Olusanmi; Treinen, Chantal; Vahidinasab, Maliheh; Pfannstiel, Jens; Bertsche, Ute; Fadahunsi, I.; Oellig, Claudia; Granvogl, Michael; Henkel, Marius; Lilge, Lars; Hausmann, RudolfAs a lipopeptide (LP), surfactin exhibits properties, such as emulsifying and dispersing ability, which are useful in food industry. Discovery of new LP‐producing strains from food sources is an important step towards possible application of surfactin in foods. A total of 211 spore‐forming, Gram‐positive, and catalase‐positive bacterial strains were isolated from fermented African locust beans (iru) and palm oil mill effluents in a screening process and examined for their ability to produce surfactin. This was achieved by a combination of methods, which included microbiological and molecular classification of strains, along with chemical analysis of surfactin production. Altogether, 29 isolates, positive for oil spreading and emulsification assays, were further identified with 16S rDNA analysis. The strains belonged to nine species including less commonly reported strains of Lysinibacillus, Bacillus flexus, B. tequilensis, and B. aryabhattai. The surfactin production was quantitatively and qualitatively analysed by high‐performance thin‐layer chromatography and liquid chromatography‐mass spectrometry (LC–MS). Confirmation of surfactin by MS was achieved in all the 29 strains. Highest surfactin production capability was found in B. subtilis IRB2‐A1 with a titre of 1444·1 mg L−1.Publication Investigations on the mechanisms of sterilization by non-thermal low-pressure nitrogen-oxygen plasmas(2011) Roth, Stefan; Hertel, ChristianPlastic based materials are increasingly used for packaging of pharmaceuticals (especially biologicals), food or beverages and production of medical devices. Their heat sensitivity requires safe and efficient non-thermal methods for decontamination. Plasma technology has the potential to provide a suitable means since it works at low temperatures and ? in contrast to conventional methods like application of ionizing radiation or ethylene oxide exposure ? is safe to operate, is free of residues and does not alter the bulk properties of the materials. Plasmas can generate various agents potentially active in decontamination like ultra-violet (UV) radiation, radicals and other reactive particles. To acquire an approval for plasma technology as a novel sterilization method, its process safety has to be proven. The research community has proposed hypotheses and models on its mechanisms of action, which are at least partially speculative. Still little is known about the details of the biologic effects of the combination of the various plasma agents on the components of microbial cells or spores. Especially, the question remains open which components of a cell or spore are the primary targets, and which of the agents are most effective in the inactivation process. The acquisition of such knowledge is necessary to identify parameters suitable to control, monitor, and assess the safety of plasma sterilization processes. The aims of the presented work are to elucidate which components of a cell or spore are the primary targets in low-pressure plasma sterilization, and which of the putative agents contained in the plasma are most effective in the inactivation process. To accomplish this, in the presented work suitable microbiological methods were established and the inactivation of bacterial spores and cells and fungal conidia by microwave induced low-pressure low-temperature nitrogen-oxygen plasmas was investigated. Moreover, two strategies were pursued that have hitherto not been applied in published plasma sterilization studies: (i) Using spores of Bacillus subtilis mutants to identify structural components serving as targets for sterilization with plasma and (ii) characterizing the response of Deinococcus radiodurans R1 cells to plasma treatment and identify repair processes during recovery from plasma induced damages in viable cells. Plasmas producing a maximum of UV emission were most effective in inactivating bacterial cells and spores. The inactivation followed a biphasic kinetics consisting of a log-linear phase with rapid inactivation followed by a slow inactivation phase. A continuous model fit was applied to the experimental data allowing reliable calculation of decimal reduction values for both phases. Cells of D. radiodurans were found to be more resistant than spores of B. subtilis. For B. subtilis spores, in the course of plasma treatment damage to DNA, proteins and spore membranes were observed by monitoring the occurrence of auxotrophic mutants, inactivation of catalase (KatX) activity and the leakage of dipicolinic acid, respectively. Spores of the wild-type strain showed highest resistance to plasma treatment. Spores of mutants defective in nucleotide excision repair (uvrA) and small acid-soluble proteins (ΔsspA ΔsspB) were more sensitive than those defective in the coat protein CotE or spore photoproduct repair (splB). Exclusion of reactive particles and spectral fractions of UV radiation from access to the spores revealed that UV-C radiation is the most effective inactivation agent in the plasma, whereby the splB and ΔcotE mutant spores were equally and slightly less sensitive, respectively, than the wild-type spores. The extent of damages in the spore DNA as determined by quantitative PCR correlated with the spore inactivation. Spore inactivation was effectively mediated by a combination of DNA damage and protein inactivation. DNA was identified to be the primary target for spore inactivation by UV radiation emitted by the plasma. Coat proteins were found to constitute a protective layer against the action of the plasma. For the investigation of the recovery from plasma-induced damages, cells of D. radiodurans R1 were subjected to short plasma treatments with various plasmas. A part of the survivors was sublethally injured as determined by their ability to form colonies on standard medium but not on stress medium and by the observation of a prolonged lag phase. Incubation of the cells in a recovery medium after plasma treatment allowed a part of the survivors to recover their ability to grow on stress medium. This recovery strongly depended on transcriptional and translational processes and cell wall synthesis, as revealed by addition of specific inhibitors to the recovery medium. Genes involved in DNA repair, oxidative stress response and cell wall synthesis were induced during recovery, as determined by quantitative RT-PCR. Damage to chromosomal DNA caused by plasma agents and in-vivo repair during recovery was directly shown by quantitative PCR. Plasmas with less UV radiation emission were also effective in killing D. radiodurans cells but resulted in less DNA damage and lower induction of the investigated genes. The response of D. radiodurans to plasma indicated that DNA, proteins and cell wall are primary targets of plasma, whose damage initially leads to the cells' death. Protein oxidation was more important for the killing of D. radiodurans cells than of B. subtilis spores. Thus, the plasma process parameters must regard the expected contaminating biological material in order to obtain a high-level sterilization. The results provide new insight into the interaction of non-thermal low-pressure plasmas with microorganisms. This knowledge supports the definition of suitable parameters for novel plasma sterilization equipment to control process safety. For example, monitoring the UV intensity below 280 nm and spectrometric online measurement of bands related to excited reactive gas particle species during the process is recommended.