Browsing by Subject "Aquaculture technologies"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication An economic analysis of fish demand and livelihood outcomes of small-scale aquaculture in Myanmar(2021) Aung, Yee Mon; Zeller, ManfredGiven that capture fishery production has either remained stagnant or declined globally, aquaculture has been responsible for the massive growth in the supply of fish to fulfill increasing demand and has also improved livelihoods. The development of the fishery sector, particularly aquaculture, has the potential to contribute to the Sustainable Development Goals (SDGs). New technologies and effective fishery management policies play critical roles in achieving this sectors contribution to the SDGs. Although aquaculture in Myanmar is dominated by large-scale fish farming, a larger number of small-scale aquaculture (SSA) households exist either legally or illegally because profitability and employment opportunities have enticed them to enter the sector. However, the potential of SSA farmers and their challenges are still overlooked. Even though Myanmar is one of the major consumers of fish and producers of aquaculture fish worldwide, to date, a holistic approach that considers the demand and supply side of Myanmars aquaculture sector is rare. The thesis focuses on two main topics. One topic is an analysis of the disaggregated fish demand system. Empirical evidence on whether the aquaculture sector can meet household demand through adequate availability of and accessibility to fish is vital to ensure household food and nutrition security and understand the future of the fish demand. The second main topic focuses on the two aspects of production based on SSA farms; production efficiency and impacts on welfare outcomes from the adoption of sustainable aquaculture (SA) technologies. To fulfill fish demand by increasing the supply of fish from farms, production efficiency of the farmers needs to improve to generate profitable in the face of lower fish prices that will accompany an increase in supply. In addition, traditional aquaculture production practices are risky and are not a long-term option for SSA farmers. Therefore, renewing or modifying productive resources and implementing new technologies may play critical roles in the development of a sustainable SSA sector. The study on the fish demand analysis in Chapter 2 relies on nationally representative data from the "Myanmar Poverty and Living Conditions survey (MPLCS) in 2015,". For the production side analysis in Chapters 3 and 4, primary survey data originate from 440 SSA households collected in three townships in Phyapon District, Ayeyarwady Delta region, Myanmar. Chapter 2 estimates the demand parameters differentiated by fish supply sources (aquaculture, freshwater capture, marine capture, and dried fish) and household groups (wealth group and household location) in Myanmar using a three-stage budgeting framework, combined with a Quadratic Almost Ideal Demand System (QUAIDS). The results reveal that fish demand from all sources of fish and household groups increases with income because fish is the second most crucial food commodity after rice in Myanmar. A substantial share of the increasing demand for all sources of fish is likely to come from poor and rural households with growing incomes due to their higher-income elasticity for all sources of fish. Moreover, less elastic price elasticity of demand in most cases for poor and rural households indicates that those households have less animal protein substitutes for fish available and accessible because fish is the cheapest form of an animal protein source in Myanmar. Due to the income responsiveness of aquaculture fish, its demand will grow faster than that of other fish sources. This study confirms that the rapidly growing aquaculture sector can compensate for the concurrent stagnation of capture fisheries production to fulfill the increase in the fish demand. The studys findings suggest that effective management policies and new technologies are essential to sustain the fish supply from capture fisheries and aquaculture. Intervention programs that sustainably increase aquaculture production will generate the most effective and significant effects on securing households food and nutrition security in the long-run. Chapter 3 analyzes the current technical efficiency level of SSA farms and the link between womens level of participation in decision-making (WPDM) activities and the technical efficiency of fish farming using the two-stage double bootstrap data envelopment analysis (DEA) method. The results show that most SSA farming households are not technically efficient, performing in a range of 45%-60% below the production frontier. All the inputs used contain slacks, such that all of them are over-utilized in inappropriate ratios. This study reveals that while some of the households socio-economic and production characteristics are significant shifters to enhance efficiency of fish farming, decision-making power of women at the household-level is found to significantly improve the level of technical efficiency through its effects on the ability of household members to allocate and organize resources optimally. This study highlights the vital need to promote intervention programs targeted at improving the technical efficiency of SSA farming households. Policies and intervention programs aimed at increasing productivity in the aquaculture sector would benefit by including women empowerment programs to reduce gender inequality and promote equity. Chapter 4 evaluates the determinants and the impacts of SA technologies adoption on SSA households’ welfare outcomes using the endogenous switching regression (ESR) model. The significant value of the correlation coefficients between the error terms of the adoption decision and the outcome equations, as well as heterogeneity in the outcome variables between adopters and non-adopters, confirm that the ESR model is more appropriate than data pooling in a regression model. The models actual and counterfactual results highlight that the adoption of SA technologies increases the SSA households welfare outcomes, measured by fish yield per ha, Household Dietary Diversity Score (HDDS), and Total Food Consumption Score (TFCS). However, the actual adopters would benefit the most in terms of fish yield per ha and TFCS from adopting SA technologies because the average treatment effects of adoption on adopters are larger than that of non-adopters for these variables. The results highlight that household knowledge about aquaculture production and information sources are main drivers for the adoption decision and improving welfare outcomes. Therefore, appropriate policies targeting SSA development should emphasize the promotion of farmers awareness and adoption of SA technologies by providing improved extension services. This thesis findings contribute to the current debate that the development of the aquaculture sector can help achieve some of the SDGs. In particular, aquaculture can help end hunger through increased food security by making fish more widely available and accessible by increasing the supply of fish. Moreover, aquaculture can improve gender equality and women’s empowerment through creating employment opportunities linked to the aquaculture sector. Given the lower technical efficiency level and positive welfare impacts of SA technologies, it is recommended that the government and other development organizations disseminate information on the improved aquaculture practices and suitable input use through improved extension services to SSA farmers. Due to the dominance of a single fish species in the aquaculture sector, the government needs to support research and development programs in the hatchery sector for a new generation of species. Another recommendation is to reformulate the current "Farmland Law 2012" because it puts restrictions on converting agricultural land to fish ponds, which is preventing farmers entering the aquaculture sector legally. The above policy recommendations are crucial to achieve growth in the SSA sector and increase women’s intra-household decision-making power, thereby opening the door to improve livelihoods.