Browsing by Subject "Afforestation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015(2024) Breil, Marcus; Schneider, Vanessa K. M.; Pinto, Joaquim G.Afforestation affects the earth's climate system by changing the biogeochemical and biogeophysical characteristics of the land surface. While the regional effects of afforestation are well understood in the tropics and the high latitudes, its climate impact on the midlatitudes is still the subject of scientific discussions. The general impact of afforestation on the regional climate conditions in Europe during the last decades is investigated in this study. For this purpose, regional climate simulations are performed with different forest cover fractions over Europe. In a first simulation, afforestation in Europe is considered, while this is not the case for a second simulation. We focus on the years 1986–2015, a period in which the forest cover in Europe increased comparatively strongly, accompanied by a strong general warming over the continent. Results show that afforestation has both local and non-local effects on the regional climate system in Europe. Due to an increased transport of turbulent heat (latent + sensible) into the atmosphere, afforestation leads to a significant reduction of the mean local surface temperatures in summer. In northern Europe, mean local surface temperatures were reduced about -0.3 K with afforestation, in central Europe about -0.5 K, and in southern Europe about -0.8 K. During heat periods, this local cooling effect can reach -1.9 K. In winter, afforestation results in a slight local warming in both northern and southern Europe because of the albedo effect of forests. However, this effect is rather small and the mean temperature changes are not significant. In the downwind direction, locally increased evapotranspiration rates with afforestation increase the general cloud cover, which results in a slight non-local warming in winter in several regions of Europe, particularly during cold spells. Thus, afforestation had a discernible impact on the climate change signal in Europe during the period 1986–2015, which may have mitigated the general warming trend in Europe, especially on the local scale in summer.Publication The impact of irrigated biomass plantations on mesoscale climate in coastal arid regions(2015) Branch, Oliver; Wulfmeyer, VolkerLarge-scale agroforestry in coastal arid and semi-arid regions could provide a geoengineering solution to anthropogenic climate change. Since agroforestry may impact on mesoscale climate in unknown ways, urgent research into potential impacts of large-plantations is needed to fully assess the viability and optimal placement for such schemes. Validated mesoscale simulations provide insights into feedbacks between land surface and atmosphere, particularly with respect to convective processes. Simulations of irrigated Simmondsia chinensis (jojoba) plantations were carried out with the WRF-NOAH atmosphere-land surface model using prescribed land surface and plant parameters. A sub-surface irrigation algorithm was developed based on critical soil moisture stress levels and implemented into the model code. The simulation of desert and plantation land surfaces was validated with field data from two sites in the Negev Desert - an arid desert site and a 400 ha jojoba plantation. For desert and vegetated surfaces, the model output of diurnal meteorological quantities and energy fluxes generally match well with the respective observations. Diurnal 2m-temperatures over the desert and plantation are matched by the model to within ± 0.2 °C and ± 1.5 °C, respectively. Wind speeds for both surfaces match to within 0.5 ms−1 and plantation latent heat is reproduced to within ± 20 Wm−2. Subsequent to validation, larger plantations of 100 km × 100 km were then simulated in two coastal arid regions, Israel and Oman over a period of one month and compared with control runs, without plantations. In Oman, convection and precipitation were triggered or enhanced by the plantation over multiple days whereas in Israel almost no impacts were observed. Two mechanisms were responsible for observed convection initiation: turbulent vertical transport of scalars due to increased surface heating and roughness as well as a low pressure-induced convergence at the canopy leeside. The main contributors to the surface heating effect were reduced albedo and the high water-use efficiency exhibited by specialist desert species. The combination of increased net surface radiation and high stomatal resistances significantly limited transpiration and led to a surplus in sensible heat flux compared with the surrounding soils (> 100 Wm−2). In Oman, convection initiation triggered by the plantation tended to occur on days when a high mid-tropospheric temperature lapse rate and significant surface air humidity were present. Israel exhibits more stable lapse rates during summer and drier conditions aloft, both of which suppressed convection significantly, even with a similar land surface perturbation. The initiation of moist convection at the mesoscale is therefore strongly controlled by prevailing synoptic conditions. A regional climatological analysis of temperature and humidity ECMWF reanalysis data and station precipitation data indicate that the south-west of North America has particularly suitable conditions for impacts. Coastal locations in Baja California and the Sonoran Desert exhibit a seasonal concurrence of monsoonal instability, high surface humidity and integrated column water vapor, but at the same time low precipitation. Therefore plantation impacts on convection there are likely and could be beneficial in terms of higher amounts of precipitation. These findings indicate that mesoscale convective events can be triggered by large plantations within arid and semi-arid regions and that these effects may be controllable via judicious placement of such schemes. Thus arid agroforestry has the potential not only to increase precipitation and reverse desertification within arid and semi-arid regions, but also to mitigate climate change if implemented on very large scales.