Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/13
Browse
Browsing Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik by Sustainable Development Goals "13"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors(2021) El Hassouni, Khaoula; Sielaff, Malte; Curella, Valentina; Neerukonda, Manjusha; Leiser, Willmar; Würschum, Tobias; Schuppan, Detlef; Tenzer, Stefan; Longin, C. Friedrich H.Amylase trypsin inhibitors (ATIs) are important allergens in baker’s asthma and suspected triggers of non-celiac wheat sensitivity (NCWS) inducing intestinal and extra-intestinal inflammation. As studies on the expression and genetic architecture of ATI proteins in wheat are lacking, we evaluated 149 European old and modern bread wheat cultivars grown at three different field locations for their content of eight ATI proteins. Large differences in the content and composition of ATIs in the different cultivars were identified ranging from 3.76 pmol for ATI CM2 to 80.4 pmol for ATI 0.19, with up to 2.5-fold variation in CM-type and up to sixfold variation in mono/dimeric ATIs. Generally, heritability estimates were low except for ATI 0.28 and ATI CM2. ATI protein content showed a low correlation with quality traits commonly analyzed in wheat breeding. Similarly, no trends were found regarding ATI content in wheat cultivars originating from numerous countries and decades of breeding history. Genome-wide association mapping revealed a complex genetic architecture built of many small, few medium and two major quantitative trait loci (QTL). The major QTL were located on chromosomes 3B for ATI 0.19-like and 6B for ATI 0.28, explaining 70.6 and 68.7% of the genotypic variance, respectively. Within close physical proximity to the medium and major QTL, we identified eight potential candidate genes on the wheat reference genome encoding structurally related lipid transfer proteins. Consequently, selection and breeding of wheat cultivars with low ATI protein amounts appear difficult requiring other strategies to reduce ATI content in wheat products.Publication Genetic dissection of drought tolerance in maize through GWAS of agronomic traits, stress tolerance indices, and phenotypic plasticity(2025) Li, Ronglan; Li, Dongdong; Guo, Yuhang; Wang, Yueli; Zhang, Yufeng; Li, Le; Yang, Xiaosong; Chen, Shaojiang; Würschum, Tobias; Liu, Wenxin; Li, Ronglan; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China; Li, Dongdong; State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Guo, Yuhang; State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Wang, Yueli; State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Zhang, Yufeng; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China; Li, Le; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China; Yang, Xiaosong; State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Chen, Shaojiang; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China; Würschum, Tobias; Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany; Liu, Wenxin; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China; Han, De-GuoDrought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and water-deficit (WD) conditions, (2) stress tolerance indices of these traits, and (3) phenotypic plasticity, using a multi-parent doubled haploid (DH) population assessed in multi-environment trials. Genome-wide association studies (GWAS) identified 130, 171, and 71 quantitative trait loci (QTL) for the three groups of phenotypes, respectively. Only one QTL was shared among all trait groups, 25 between stress indices and agronomic traits, while the majority of QTL were specific to their group. Functional annotation of candidate genes revealed distinct pathways of the three phenotypic groups. Candidate genes under WD conditions were enriched for stress response and epigenetic regulation, while under WW conditions for protein synthesis and transport, RNA metabolism, and developmental regulation. Stress tolerance indices were enriched for transport of amino/organic acids, epigenetic regulation, and stress response, whereas plasticity showed enrichment for environmental adaptability. Transcriptome analysis of 26 potential candidate genes showed tissue-specific drought responses in leaves, ears, and tassels. Collectively, these results indicated both shared and independent genetic mechanisms underlying drought tolerance, providing novel insights into the complex phenotypes related to drought tolerance and guiding further strategies for molecular breeding in maize.