Institut für Phytomedizin
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/14
Browse
Browsing Institut für Phytomedizin by Sustainable Development Goals "2"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Efficacy of various mechanical weeding methods - single and in combination - in terms of different field conditions and weed densities(2021) Naruhn, Georg-Peter; Peteinatos, Gerassimos G.; Butz, Andreas F.; Möller, Kurt; Gerhards, RolandPublic awareness and environmental policies have increased interest in applying non-herbicide weed control methods in conventional farming systems. Even though mechanical weed control has been used for centuries in agricultural practice, continuous developments—both in terms of implements and automation technologies—are continuously improving the potential outcomes. Current mechanical weed control methods were evaluated for their weed control efficacy and effects on yield potential against their equivalent herbicide methods. Furthermore, not much is known about the correlation between weed control efficacy (WCE) of different mechanical methods at varying weed density levels. A total of six experiments in winter wheat (2), peas (2), and soybean (2) were carried out in the years 2018, 2019, and 2020 in southwestern Germany. Harrowing and hoeing treatments at different speeds were carried out and compared to the herbicide treatments and untreated control plots. Regarding the average WCE, the combination of harrowing and hoeing was both the strongest (82%) and the most stable (74–100%) mechanical treatment in the different weed density levels. Whereas, in average, hoeing (72%) and harrowing (71%) were on the same WCE level, but harrowing (49–82%) was more stable than hoeing (40–99%). The grain yields in winter wheat varied between 4.1 Mg∙ha−1 (control) and 6.3 Mg∙ha−1 (harrow), in pea between 2.8 Mg∙ha−1 (hoe slow) and 5.7 Mg∙ha−1 (hoe fast) and in soybean between 1.7 Mg∙ha−1 (control) and 4 Mg∙ha−1 (herbicide). However, there were no significant differences in most cases. The results have shown that it is not possible to pinpoint a specific type of treatment as the most appropriate method for this cultivation, across all of the different circumstances. Different field and weather conditions can heavily affect and impact the expected outcome, giving, each time, an advantage for a specific type of treatment.Publication Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum(2022) Schlemmer, Timo; Lischka, Richard; Wegner, Linus; Ehlers, Katrin; Biedenkopf, Dagmar; Koch, Aline; Schlemmer, Timo; Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany; Lischka, Richard; Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Giessen, Germany; Wegner, Linus; Intitute of Botany, Justus Liebig University, Giessen, Germany; Ehlers, Katrin; Intitute of Botany, Justus Liebig University, Giessen, Germany; Biedenkopf, Dagmar; Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Giessen, Germany; Koch, Aline; Institute of Phytomedicine, University of Hohenheim, Stuttgart, GermanyNumerous reports have shown that incorporating a double-stranded RNA (dsRNA)-expressing transgene into plants or applying dsRNA by spraying it onto their leaves successfully protects them against invading pathogens exploiting the mechanism of RNA interference (RNAi). How dsRNAs or siRNAs are transferred between donor host cells and recipient fungal cells is largely unknown. It is speculated that plant extracellular vesicles (EVs) function as RNA shuttles between plants and their pathogens. Recently, we found that EVs isolated from host-induced gene silencing (HIGS) or spray-induced gene silencing (SIGS) plants contained dsRNA-derived siRNAs. In this study, we evaluated whether isolated EVs from dsRNA-sprayed barley ( Hordeum vulgare ) plants affected the growth of the phytopathogenic ascomycete Fusarium graminearum . Encouraged by our previous finding that dropping barley-derived EVs on F. graminearum cultures caused fungal stress phenotypes, we conducted an in vitro growth experiment in microtiter plates where we co-cultivated F. graminearum with plant EVs isolated from dsRNA-sprayed barley leaves. We observed that co-cultivation of F. graminearum macroconidia with barley EVs did not affect fungal growth. Furthermore, plant EVs containing SIGS-derived siRNA appeared not to affect F. graminearum growth and showed no gene silencing activity on F. graminearum CYP51 genes. Based on our findings, we concluded that either the amount of SIGS-derived siRNA was insufficient to induce target gene silencing in F. graminearum, indicating that the role of EVs in SIGS is minor, or that F. graminearum uptake of plant EVs from liquid cultures was inefficient or impossible.