Institut für Nutztierwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/20
Browse
Browsing Institut für Nutztierwissenschaften by Sustainable Development Goals "3"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Assessing functional properties of diet protein hydrolysate and oil from fish waste on canine immune parameters, cardiac biomarkers, and fecal microbiota(2024) Cabrita, Ana R. J.; Barroso, Carolina; Fontes-Sousa, Ana Patrícia; Correia, Alexandra; Teixeira, Luzia; Maia, Margarida R. G.; Vilanova, Manuel; Yergaliyev, Timur; Camarinha-Silva, Amélia; Fonseca, António J. M.; Cabrita, Ana R. J.; REQUIMTE, Network of Chemistry and Technology, LAQV, Laboratory for Green Chemistry, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Barroso, Carolina; REQUIMTE, Network of Chemistry and Technology, LAQV, Laboratory for Green Chemistry, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Fontes-Sousa, Ana Patrícia; Department of Immuno-Physiology and Pharmacology, Center for Pharmacological Research and Drug Innovation (MedInUP), ICBAS, School of Medicine and Biomedical Sciences, Veterinary Hospital of the University of Porto (UPVET), University of Porto, Porto, Portugal; Correia, Alexandra; ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Teixeira, Luzia; ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Maia, Margarida R. G.; REQUIMTE, Network of Chemistry and Technology, LAQV, Laboratory for Green Chemistry, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Vilanova, Manuel; ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Yergaliyev, Timur; HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany; Camarinha-Silva, Amélia; HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany; Fonseca, António J. M.; REQUIMTE, Network of Chemistry and Technology, LAQV, Laboratory for Green Chemistry, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, PortugalLocally produced fish hydrolysate and oil from the agrifood sector comprises a sustainable solution both to the problem of fish waste disposal and to the petfood sector with potential benefits for the animal’s health. This study evaluated the effects of the dietary replacement of mainly imported shrimp hydrolysate (5%) and salmon oil (3%; control diet) with locally produced fish hydrolysate (5%) and oil (3.2%) obtained from fish waste (experimental diet) on systemic inflammation markers, adipokines levels, cardiac function and fecal microbiota of adult dogs. Samples and measurements were taken from a feeding trial conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet and two periods of 6 weeks each. The experimental diet, with higher docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids contents, decreased plasmatic triglycerides and the activity of angiotensin converting enzyme, also tending to decrease total cholesterol. No effects of diet were observed on serum levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-8, and IL-12/IL-23 p40, and of the serum levels of the anti-inflammatory adipokine adiponectin. Blood pressure, heart rate and echocardiographic measurements were similar between diets with the only exception of left atrial to aorta diameter ratio that was higher in dogs fed the experimental diet, but without clinical relevance. Diet did not significantly affect fecal immunoglobulin A concentration. Regarding fecal microbiome, Megasphaera was the most abundant genus, followed by Bifidobacterium , Fusobacterium , and Prevotella , being the relative abundances of Fusobacterium and Ileibacterium genera positively affected by the experimental diet. Overall, results from the performed short term trial suggest that shrimp hydrolysate and salmon oil can be replaced by protein hydrolysate and oil from fish by-products without affecting systemic inflammatory markers, cardiac structure and function, but potentially benefiting bacterial genera associated with healthy microbiome. Considering the high DHA and EPA contents and the antioxidant properties of fish oil and hydrolysate, it would be worthwhile in the future to assess their long-term effects on inflammatory markers and their role in spontaneous canine cardiac diseases and to perform metabolomic and metagenomics analysis to elucidate the relevance of microbiota changes in the gut.Publication Haemotrophic mycoplasmas infecting pigs: a review of the current knowledge(2024) Ade, Julia; Eddicks, Matthias; Ritzmann, Mathias; Hoelzle, Katharina; Hoelzle, Ludwig E.; Stadler, Julia; Ade, Julia; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; Eddicks, Matthias; Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; Ritzmann, Mathias; Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; Hoelzle, Katharina; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; Hoelzle, Ludwig E.; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; Stadler, Julia; Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; Highland, Margaret A.Haemotrophic mycoplasmas (haemoplasmas) are a group of highly specific and adapted bacteria. Three different haemoplasma species in pigs are known to date: Mycoplasma ( M .) suis , M. parvum and ‘ Candidatus ( Ca .) M. haemosuis’. Even though these bacteria have been known in pig farming for a long time, it is difficult to draw general conclusions about the relevance of their infections in pigs. This review summarizes the current knowledge on the three porcine haemoplasma species with regards to clinical and pathological descriptions, pathobiology, epidemiology and diagnostics as well as prevention and therapy. Overall, it is clear that considerably more data are available for M. suis than for the other two species, but generally, porcine haemoplasmas were found to be highly prevalent all over the world. Mycoplasma suis is the most virulent species, causing acute infectious anaemia in pigs (IAP), whereas M. parvum usually results in chronic and subclinical infections associated with performance losses. Little is known about the clinical significance of the recently discovered third porcine species ‘ Ca . M. haemosuis’. So far, the described pathogenic mechanisms mainly include direct destruction of erythrocytes via adhesion, invasion, eryptosis and nutrient scavenging, indirect erythrocyte lysis due to immune-mediated events and immune dysregulation processes. A review of published diagnostic data confirms PCR assays as the current standard method, with various cross-species and species-specific protocols. Overall, there is a need for further examination to obtain valuable insights for practical application, specifically regarding the importance of subclinical infections in naturally infected animals. An essential requirement for this will be to gain a more comprehensive understanding of the mechanisms operating between the host and the pathogen.Publication Hemotrophic mycoplasmas - vector transmission in livestock(2024) Arendt, Mareike; Stadler, Julia; Ritzmann, Mathias; Ade, Julia; Hoelzle, Katharina; Hoelzle, Ludwig E.; Arendt, Mareike; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; (M.A.); (J.A.); (K.H.); Stadler, Julia; Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (J.S.); (M.R.); Ritzmann, Mathias; Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (J.S.); (M.R.); Ade, Julia; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; (M.A.); (J.A.); (K.H.); Hoelzle, Katharina; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; (M.A.); (J.A.); (K.H.); Hoelzle, Ludwig E.; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; (M.A.); (J.A.); (K.H.); Dozois, Charles M.Hemotrophic mycoplasmas (HMs) are highly host-adapted and specialized pathogens infecting a wide range of mammals including farm animals, i.e., pigs, cattle, sheep, and goats. Although HMs have been known for over 90 years, we still do not know much about the natural transmission routes within herds. Recently, it has been repeatedly discussed in publications that arthropod vectors may play a role in the transmission of HMs from animal to animal. This is mainly since several HM species could be detected in different potential arthropod vectors by PCR. This review summarizes the available literature about the transmission of bovine, porcine, ovine, and caprine HM species by different hematophagous arthropod vectors. Since most studies are only based on the detection of HMs in potential vectors, there are rare data about the actual vector competence of arthropods. Furthermore, there is a need for additional studies to investigate, whether there are biological vectors in which HMs can multiply and be delivered to new hosts.Publication New insights into the phylogeny of the A.Br.161 (“A.Br.Heroin”) clade of Bacillus anthracis(2024) Antwerpen, Markus; Beyer, Wolfgang; Grass, Gregor; Antwerpen, Markus; Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; Beyer, Wolfgang; Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; Grass, Gregor; Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; Anderson, DeborahBacillus anthracis is a rare but highly dangerous zoonotic bacterial pathogen. At the beginning of this century, a new manifestation of the disease, injectional anthrax, emerged as a result of recreational heroin consumption involving contaminated drugs. The organisms associated with this 13-year-lasting outbreak event in European drug consumers were all grouped into the canonical single-nucleotide polymorphism (canSNP) clade A-branch (A.Br.) 161 of B. anthracis . Related clade A.Br.161 strains of B. anthracis not associated with heroin consumption have also been identified from different countries, mostly in Asia. Because of inadvertent spread by anthropogenic activities, other strains of this A.Br.161 lineage were, however, isolated from several countries. Thus, without additional isolates from this clade, its origin of evolution or its autochthonous region remains obscure. Here, we genomically characterized six new A.Br.161 group isolates, some of which were from Iran, with others likely historically introduced into Germany. All the chromosomes of these isolates could be grouped into a distinct sub-clade within the A.Br.161 clade. This sub-clade is separated from the main A.Br.161 lineage by a single SNP. We have developed this SNP into a PCR assay facilitating the future attribution of strains to this group.