Institut für Nutztierwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/20
Browse
Browsing Institut für Nutztierwissenschaften by Sustainable Development Goals "15"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication The active core microbiota of two high-yielding laying hen breeds fed with different levels of calcium and phosphorus(2022) Roth, Christoph; Sims, Tanja; Rodehutscord, Markus; Seifert, Jana; Camarinha-Silva, AméliaThe nutrient availability and supplementation of dietary phosphorus (P) and calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase degradation and mineral utilization during the laying phase. The required concentration of P and Ca peaks during the laying phase, and the direct interaction between Ca and P concentration shrinks the availability of both supplements in the feed. Our goal was to characterize the active microbiota of the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca), including digesta- and mucosa-associated communities of two contrasting high-yielding breeds of laying hens (Lohmann Brown Classic, LB; Lohmann LSL-Classic, LSL) under different P and Ca supplementation levels. Statistical significances were observed for breed, GIT section, Ca, and the interaction of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core microbiota of five species was detected in more than 97% of all samples. They were represented by an uncl. Lactobacillus (average relative abundance (av. abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis (av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl. Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P supplementation levels 20% below the recommendation have a minor effect on the microbiota compared to the strong impact of the bird’s genetic background. Moreover, a core active microbiota across the GIT of two high-yielding laying hen breeds was revealed for the first time.Publication Fecal cortisol metabolites indicate increased stress levels in horses during breaking-in: a pilot study(2025) Krieber, Julia; Nowak, Aurelia C.; Geissberger, Jakob; Illichmann, Oliver; Macho-Maschler, Sabine; Palme, Rupert; Dengler, Franziska; Krieber, Julia; Institute of Physiology and Pathophysiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, (A.C.N.);; Nowak, Aurelia C.; Institute of Physiology and Pathophysiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, (A.C.N.);; Geissberger, Jakob; Institute of Physiology and Pathophysiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, (A.C.N.);; Illichmann, Oliver; Institute of Physiology and Pathophysiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, (A.C.N.);; Macho-Maschler, Sabine; Experimental Endocrinology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;; Palme, Rupert; Experimental Endocrinology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;; Dengler, Franziska; Institute of Physiology and Pathophysiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, (A.C.N.);; Madigan, JohnSport horses are frequently exposed to situations that were identified as stressors, indicated by an increased cortisol release, which might impair animal welfare. However, while many studies deal with the impact of exercise, transport, and competition on stress in horses, little is known about the early phase of a horse’s sports career and studies investigating the stress level of young horses during breaking-in are limited. To compare stress levels in unridden horses, horses during breaking-in, and horses in training we collected fecal samples of young, unridden horses ( n = 28) and of horses in different training stages ( n = 13) and measured fecal cortisol metabolite (FCM) concentrations. Our preliminary results showed that FCM concentrations of unridden horses were significantly lower than those of horses in training (Mann–Whitney rank sum test, p < 0.001). Particularly in the first year under the saddle FCMs were significantly higher than in unridden horses (one way ANOVA + post hoc Holm–Sidak test, p < 0.05), with a tendency for FCM levels to decrease with time in training. Furthermore, we observed that within the group of ridden horses there was a larger range of variability in FCM levels, suggesting individual variations regarding their ability to deal with (training-induced) stress. These results indicate that breaking-in is a stressful time for young horses, underlining the importance of carrying out the initial training as carefully as possible.Publication Transcriptional responses in jejunum of two layer chicken strains following variations in dietary calcium and phosphorus levels(2021) Reyer, Henry; Oster, Michael; Ponsuksili, Siriluck; Trakooljul, Nares; Omotoso, Adewunmi O.; Iqbal, Muhammad A.; Muráni, Eduard; Sommerfeld, Vera; Rodehutscord, Markus; Wimmers, KlausBackground: Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). Results: Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. Conclusions: The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.