Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "6"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization - a study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, Torsten; Herrmann, Michelle Natalie; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Griffin, Lydia Grace; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; John, Rebecca; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Mosquera-Rodríguez, Sergio F.; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Nkebiwe, Peteh Mehdi; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Chen, Xinping; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Yang, Huaiyu; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Müller, Torsten; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, GermanyIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Local and systemic metabolic adjustments to drought in maize: hydraulic redistribution in a split‐root system(2022) Werner, Lena Maria; Hartwig, Roman Paul; Engel, Isabelle; Franzisky, Bastian Leander; Wienkoop, Stefanie; Brenner, Martin; Preiner, Julian; Repper, Dagmar; Hartung, Jens; Zörb, Christian; Wimmer, Monika AndreaBackground: It is yet unknown how maize plants respond to a partial root drying under conditions of a limited total water supply, and which adaptation mechanisms are triggered under these conditions. Aims: The aims of this study were to assess whether partial root drying results in distinguishable local and systemic physiological and metabolic drought responses, and whether compensatory water uptake and/or alteration of root architecture occurs under these conditions. Methods: Maize plants were grown in a split-root system. When plants were 20 days old, the treatments ‘well-watered’, ‘local drought’ and ‘full drought’ were established for a period of 10 days. Shoot length and gas exchange were measured non-destructively, root exudates were collected using a filter system and biomass, relative water content, osmolality and proline content were determined destructively at final harvest. Results: Local drought triggered stress responses such as reduced biomass, shoot length, relative water content and increased osmolality. Maintained root growth was systemically achieved by hydraulic redistribution rather than by altering root architecture. Local and systemic osmolyte adjustments contributed to this hydraulic redistribution. Conclusions: Both local and systemic metabolic responses helped the plants to induce hydraulic redistribution, enhance water availability and in consequence plant water relations. This resulted in a surprisingly well-maintained root growth even in the drought stressed root compartment.