Institut für Lebensmittelchemie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/8
Browse
Browsing Institut für Lebensmittelchemie by Sustainable Development Goals "12"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Monodopsis subterranea is a source of α‐tocomonoenol, and its concentration, in contrast to α‐tocopherol, is not affected by nitrogen depletion(2024) Montoya‐Arroyo, Alexander; Muñoz‐González, Alejandra; Lehnert, Katja; Frick, Konstantin; Schmid‐Staiger, Ulrike; Vetter, Walter; Frank, Janα-Tomonoenols (αT1) are tocochromanols structurally related to tocopherols (T) and tocotrienols (T3), the bioactive members of the vitamin E family. However, limited evidence exists regarding the sources and biosynthesis of tocomonoenols. Nitrogen depletion increases the content of α-tocopherol (αT), the main vitamin E congener, in microalgae, but little is known regarding its effect on other tocochromanols, such as tocomonoenols and tocotrienols. We therefore quantified the concentrations of T, T1, and T3, in freeze-dried biomass from nitrogen-sufficient, and nitrogen-depleted Monodopsis subterranea (Eustigmatophyceae). The identities of isomers of αT1 were confirmed by LC–MS and GC–MS. αT was the predominant tocochromanol (82% of total tocochromanols). αT1 was present in higher quantities than the sum of all T3 (6% vs. 1% of total tocochromanols). 11′-αT1 was the main αT1 isomer. Nitrogen depletion increased αT, but not αT1 or T3 in M. subterranea. In conclusion, nitrogen depletion increased the content of αT, the biologically most active form of vitamin E, in M. subterranea without affecting αT1 and T3 and could potentially be used as a strategy to enhance its nutritional value but not to increase αT1 content, indicating that αT1 accumulation is independent of that of αT in microalgae.Publication Potentially beneficial effects on healthy aging by supplementation of the EPA-rich microalgae phaeodactylum tricornutum or its supernatant - a randomized controlled pilot trial in elderly individuals(2022) Stiefvatter, Lena; Frick, Konstantin; Lehnert, Katja; Vetter, Walter; Montoya-Arroyo, Alexander; Frank, Jan; Schmid-Staiger, Ulrike; Bischoff, Stephan C.Dietary supplements that promote healthy aging are mostly warranted in an aging society. Because of age-related risks, anti-inflammatory and anti-oxidative agents such as microalgae are potential candidates for intervention. In a randomized controlled trial, we tested Phaeodactylum tricornutum (PT), a microalgae rich in eicosapentaenoic acid (EPA), carotenoids, vitamins, and β-glucans, cultured in bioreactors. In this pilot trial, 19 healthy elderly received supplements for two weeks based on either the whole PT (A), the β-1,3-glucan-rich PT supernatant (SupB), the combination thereof (A+SupB), or a Comparator product (Comp). The primary outcome variable plasma interleukin-6 was reduced after treatment with A+SupB compared to the Comp group (p = 0.04). The mobility parameters 5 s sit-to-stand test (p = 0.04 in the A group) and by trend gait speed (p = 0.08 in the A+SupB diet) were improved compared to Comp. No treatment effects were observed for fatty acids, compared to Comp but omega-6 to -3 fatty acid ratio (p = 0.006) and arachidonic acid/EPA ratio (p = 0.006) were reduced within group A+SupB. Further, the SupB study product reduced faecal zonulin (p = 0.03) compared to the Comp. The data revealed an anti-inflammatory and potentially anti-oxidative effect of particular PT preparations, suggesting that they might be suitable for effects in healthy elderly.Publication Stable isotope analysis confirms substantial changes in the fatty acid composition of bacteria treated with antimicrobial random peptide mixtures (RPMs)(2022) Wiedmaier-Czerny, Nina; Schroth, Dorothee; Krauß, Stephanie; Topman-Rakover, Shiri; Brill, Aya; Burdman, Saul; Hayouka, Zvi; Vetter, Walter; Wiedmaier-Czerny, Nina; Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany; Schroth, Dorothee; Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany; Krauß, Stephanie; Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany; Topman-Rakover, Shiri; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Brill, Aya; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Burdman, Saul; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Hayouka, Zvi; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Vetter, Walter; Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Stuttgart, GermanyResistance of plant-pathogenic bacteria to classic antibiotics has prompted the search for suitable alternative antimicrobial substances. One promising strategy could be the use of purposely synthesized random peptide mixtures (RPMs). Six plant-pathogenic bacteria were cultivated and treated with two RPMs previously found to show antimicrobial activity mainly by bacterial membrane disruption. Here, we show that bacteria treated with RPMs showed partly remarkable changes in the fatty acid pattern while those unaffected did not. Quantitative changes could be verified by compound specific isotope analysis of δ 13 C values (‰). This technique was employed due to the characteristic feature of stronger bonds between heavier isotopes in (bio)chemical reactions. As a proof of concept, the increase in abundance of a fatty acid group after RPM treatment was accompanied with a decrease in the 13 C content and vice versa. We propose that our findings will help designing and synthesizing more selective antimicrobial peptides.