Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Sustainable Development Goals "6"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Echinococcus multilocularis and other taeniid metacestodes of muskrats in Luxembourg: prevalence, risk factors, parasite reproduction, and genetic diversity(2022) Martini, Matilde; Dumendiak, Sonja; Gagliardo, Anna; Ragazzini, Francesco; La Rosa, Letizia; Giunchi, Dimitri; Thielen, Frank; Romig, Thomas; Massolo, Alessandro; Wassermann, MarionMuskrats (Ondatra zibethicus) are competent intermediate hosts for Echinococcus multilocularis, are frequently infected with this zoonotic cestode, and have even been proposed as a target species to monitor endemicity levels of this parasite. However, their contribution to maintaining the parasitic lifecycle is still unclear. To obtain data on infection frequency and reproductive potential, 280 muskrats from the Grand Duchy of Luxembourg were examined for cestode larvae in the years 2013–2017. Based on morphological and molecular identification, Echinococcus multilocularis was found at a prevalence of 14.6%. Other metacestodes were Hydatigera kamiyai, with a prevalence of 45.7%, Taenia martis with 8.9%, Taenia polyacantha with 5.0%, and Versteria mustelae, which was found in 0.7% of all muskrats. More than 80% of E. multilocularis-infected muskrats contained fertile metacestodes with a mean number of >300,000 (and up to 1,609,816) protoscoleces, which is by far the highest reproductive potential known from any intermediate host species in Europe. Temporal analysis of E. multilocularis prevalence within the study period (and in comparison with earlier data) strongly indicates a robust increase in the studied area. Host age seemed to be an important risk factor for infection, as well as co-infections with Hydatigera kamiyai. A preference for the right medial lobe of the liver as the location of E. multilocularis metacestode was observed. Intraspecific genetic variation among 89 discrete E. multilocularis metacestodes was non-existent based on 300–1590 bp sections of cox1. This is a stark contrast to H. kamiyai, of which nine haplotypes were found on a short 318 bp section of cox1, resulting in genetic diversity in the small country of Luxembourg at a similar level than previously reported from large stretches of Europe and northern Asia.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization: A study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, TorstenIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Red foxes harbor two genetically distinct, spatially separated Echinococcus multilocularis clusters in Brandenburg, Germany(2021) Herzig, Mandy; Maksimov, Pavlo; Staubach, Christoph; Romig, Thomas; Knapp, Jenny; Gottstein, Bruno; Conraths, Franz J.Background: Alveolar echinococcosis (AE) is a clinically serious zoonosis caused by the fox tapeworm Echinococcus multilocularis. We studied the diversity and the distribution of genotypes of E. multilocularis isolated from foxes in Brandenburg, Germany, and in comparison to a hunting ground in North Rhine-Westphalia. Methods: Echinococcus multilocularis specimens from 101 foxes, 91 derived from Brandenburg and 10 derived from North Rhine-Westphalia, were examined. To detect potential mixed infections with different genotypes of E. multilocularis, five worms per fox were analyzed. For genotyping, three mitochondrial markers, namely cytochrome c oxidase subunit 1 (Cox1), NADH dehydrogenase subunit 1 (Nad1), and ATP synthase subunit 6 (ATP6), and the nuclear microsatellite marker EmsB were used. To identify nucleotide polymorphisms, the mitochondrial markers were sequenced and the data were compared, including with published sequences from other regions. EmsB fragment length profiles were determined and confirmed by Kohonen network analysis and grouping of Sammon’s nonlinear mapping with k-means clustering. The spatial distribution of genotypes was analyzed by SaTScan for the EmsB profiles found in Brandenburg. Results: With both the mitochondrial makers and the EmsB microsatellite fragment length profile analyses, mixed infections with different E. multilocularis genotypes were detected in foxes from Brandenburg and North Rhine-Westphalia. Genotyping using the mitochondrial markers showed that the examined parasite specimens belong to the European haplotype of E. multilocularis, but a detailed spatial analysis was not possible due to the limited heterogeneity of these markers in the parasite population. Four (D, E, G, and H) out of the five EmsB profiles described in Europe so far were detected in the samples from Brandenburg and North Rhine-Westphalia. The EmsB profile G was the most common. A spatial cluster of the E. multilocularis genotype with the EmsB profile G was found in northeastern Brandenburg, and a cluster of profile D was found in southern parts of this state. Conclusions: Genotyping of E. multilocularis showed that individual foxes may harbor different genotypes of the parasite. EmsB profiles allowed the identification of spatial clusters, which may help in understanding the distribution and spread of the infection in wildlife, and in relatively small endemic areas.