Browsing by Person "Zhang, Lanting"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Effect of operational parameters of unmanned aerial vehicle (UAV) on droplet deposition in trellised pear orchard(2023) Qi, Peng; Zhang, Lanting; Wang, Zhichong; Han, Hu; Müller, Joachim; Li, Tian; Wang, Changling; Huang, Zhan; He, Miao; Liu, Yajia; He, XiongkuiBackground: Unmanned Aerial Vehicles (UAVs) are increasingly being used commercially for crop protection in East Asia as a new type of equipment for pesticide applications, which is receiving more and more attention worldwide. A new model of pear cultivation called the ‘Double Primary Branches Along the Row Flat Type’ standard trellised pear orchards (FT orchard) is widely used in China, Japan, Korea, and other Asian countries because it saves manpower and is suitable for mechanization compared to traditional spindle and open-center cultivation. The disease and pest efficacy of the flat-type trellised canopy structure of this cultivation is a great challenge. Therefore, a UAV spraying trial was conducted in an FT orchard, and a four-factor (SV: Spray application volume rate, FS: Flight speed, FH: Flight height, FD: Flight direction) and 3-level orthogonal test were designed. Results: These data were used to analyze the effect, including spray coverage, deposit density, coefficient of variation, and penetration coefficient on the canopy, to determine the optimal operating parameters of the UAV for pest efficacy in FT orchards. The analysis of extremes of variance showed that factor FD had a significant effect on both spray coverage and deposition density. Followed by factor FS, which had a greater effect on spray coverage (p < 0.05), and factor SV, FH, which had a greater effect on deposition density (p < 0.05). The effects of different factors on spray coverage and deposit density were FD > FS > FH > SV, FD > FH > SV > FS, in that order. The SV3-FS1-FH1-FD3, which flight along the row with an application rate of 90 L/ha, a flight speed of 1.5 m/s, and a flight height of 4.5 m, was the optimal combination, which produced the highest deposit density and spray coverage. It was determined through univariate analysis of all experimental groups, using droplet density of 25/cm2 and spray coverage of 1%, and uniformity of 40% as the measurement index, that T4 and T8 performed the best and could meet the control requirements in different horizontal and vertical directions of the pear canopy. The parameters were as follows: flight along the tree rows, application rate not less than 75 L/ha, flight speed no more than 2 m/s, and flight height not higher than 5 m. Conclusion: This article provides ample data to promote innovation in the use of UAVs for crop protection programs in pergola/vertical trellis system orchards such as FT orchards. At the same time, this project provided a comprehensive analysis of canopy deposition methods and associated recommendations for UAV development and applications.Publication Maize characteristics estimation and classification by spectral data under two soil phosphorus levels(2022) Qiao, Baiyu; He, Xiongkui; Liu, Yajia; Zhang, Hao; Zhang, Lanting; Liu, Limin; Reineke, Alice-Jacqueline; Liu, Wenxin; Müller, JoachimAs an essential element, the effect of Phosphorus (P) on plant growth is very significant. In the early growth stage of maize, it has a high sensitivity to the deficiency of phosphorus. The main purpose of this paper is to monitor the maize status under two phosphorus levels in soil by a nondestructive testing method and identify different phosphorus treatments by spectral data. Here, the Analytical Spectral Devices (ASD) spectrometer was used to obtain canopy spectral data of 30 maize inbred lines in two P-level fields, whose reflectance differences were compared and the sensitive bands of P were discovered. Leaf Area Index (LAI) and yield under two P levels were quantitatively analyzed, and the responses of different varieties to P content in soil were observed. In addition, the correlations between 13 vegetation indexes and eight phenotypic parameters were compared under two P levels so as to find out the best vegetation index for maize characteristics estimation. A Back Propagation (BP) neural network was used to evaluate leaf area index and yield, and the corresponding prediction model was established. In order to classify different P levels of soil, the method of support vector machine (SVM) was applied. The results showed that the sensitive bands of P for maize canopy included 763 nm, 815 nm, and 900–1000 nm. P-stress had a significant effect on LAI and yield of most varieties, whose reduction rate reached 41% as a whole. In addition, it was found that the correlations between vegetation indexes and phenotypic parameters were weakened under low-P level. The regression coefficients of 0.75 and 0.5 for the prediction models of LAI and yield were found by combining the spectral data under two P levels. For the P-level identification in soil, the classification accuracy could reach above 86%. These abilities potentially allow for phenotypic parameters prediction of maize plants by spectral data and different phosphorus contents identification with unknown phosphorus fertilizer status.