Browsing by Person "Troost, Christian"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Agent-based modeling of climate change adaptation in agriculture : a case study in the Central Swabian Jura(2014) Troost, Christian; Berger, ThomasUsing the MPMAS multi-agent software, the present thesis implements an agro-economic agent-based model to analyze climate change adaptation of agricultural production in the Central Swabian Jura. It contributes to the DFG PAK 346 FOR 1695 research projects dedicated to improve the understanding of processes that shape structure and functions of agricultural landscapes in the context of climate change at regional scale. In the context of this example, this thesis discusses, develops and tests novel approaches to deal with four notorious challenges that have so far hampered the empirical use of agent-based models for applied economic analysis: data availability, process uncertainty, model validity and computational requirements. The model is used to examine climatic effects on agriculture, changes in agricultural price responses and biogas support and agri-environmental policies illustrating the applicability of the model to adaptation analysis. The first part of the thesis is dedicated to a methodological discussion of the use of mathematical programming-based multi-agent systems, such as MPMAS, for the analysis of agricultural adaptation to climate change. It synthesizes knowledge about the potential impacts of climate change and processes of farmer adaptation and reviews existing agent-based models for their potential contribution to adaptation analysis. The major focus of the first part is a discussion of available approaches to model validation, calibration and uncertainty analysis and their suitability for the use with mathematical programming-based agent-based models. This discussion is based on four principles required to ensure the validity of conclusions drawn from modeling studies: (i) a transparent model documentation, (ii) that the invariant elements of the model can really be expected to be invariant between scenarios assessed, (iii) that empirical calibration of the model is limited to the extent warranted by available observation and knowledge about the expected error distribution, and (iv) that the effect of process uncertainty on the conclusions is evaluated and communicated. Based on these conclusions, generic extensions of the MPMAS toolbox are developed to allow the application of suitable approaches for validation and uncertainty analysis. The second part of the thesis describes the application of the newly developed methodology in the construction and use of the Central Swabian Jura model. The model focuses on an endogenous representation of heterogeneity in agent behavior, an empirical parameterization of the model, and an incorporation of climate effects on possible crop rotations and suitable days for field work besides the expected effects on yields. It extends the demographic, investment and land market components of MPMAS to improve the simulation of structural change over time. The model was used to analyze potential effects of climate change adaptation on agricultural production and land use in the study area. The results show that besides effects on yields also other climate change-induced effects on the conditions of agricultural production may have important impacts on land use decisions of farmers and deserve more attention in climate change impact analysis. Potential impacts of changes in the time slots suitable for field work and an additional rotation option are predicted to be comparable to the impact of the changes in yields predicted by a crop growth model. Results point to an expansion of wheat and silage maize areas at the expense of barley areas. The partial crowding out of summer barley by wheat area held for current price relations and is less strong at higher relative prices for summer barley. Price response analysis indicated that winter wheat production enters into a substitutive relationship with summer barley production under climate change conditions, while competition with winter barley area diminishes. This leads also to a higher elasticity of the wheat area with respect to relative summer barley prices. The model was then used to analyze biogas support through the Renewable Energy Act (EEG) and the support for grassland extensification and crop rotation diversification through the MEKA scheme. Especially simulated participation in crop rotation diversification is strongly reduced in the climate change scenarios, while the investments in biogas plants are slightly increased. The conditions established by the latest EEG revision imply that further development of biogas capacity will crucially depend on the existence of demand for excess process heat, because the alternative option of using high manure shares seems to be rather unattractive for farmers in the area according to the simulation results.