Browsing by Person "Nkebiwe, Peteh Mehdi"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Publication Cannabis Hunger Games: nutrient stress induction in flowering stage – impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency(2023) Massuela, Danilo Crispim; Munz, Sebastian; Hartung, Jens; Nkebiwe, Peteh Mehdi; Graeff-Hönninger, SimoneIndoor medicinal cannabis cultivation systems enable year-round cultivation and better control of growing factors, however, such systems are energy and resource intensive. Nutrient deprivation during flowering can trigger nutrient translocation and modulate the production of cannabinoids, which might increase agronomic nutrient use efficiency, and thus, a more sustainable use of fertilizers. This experiment compares two fertilizer types (mineral and organic) applied in three dilutions (80, 160 and 240 mg N L−1) to evaluate the effect of nutrient deprivation during flowering on biomass, Cannabidiol (CBD) yield and nutrient use efficiency of N, P and K. This is the first study showing the potential to reduce fertilizer input while maintaining CBD yield of medicinal cannabis. Under nutrient stress, inflorescence yield was significantly lower at the final harvest, however, this was compensated by a higher CBD concentration, resulting in 95% of CBD yield using one-third less fertilizer. The higher nutrient use efficiency of N, P, and K in nutrient-deprived plants was achieved by a larger mobilization and translocation of nutrients increasing the utilization efficiency of acquired nutrients. The agronomic nutrient use efficiency of CBD yield – for N and K – increased 34% for the organic fertilizers and 72% for the mineral fertilizers comparing the dilution with one-third less nutrients (160) with the highest nutrient concentration (240). Differences in CBD yield between fertilizer types occurred only at the final harvest indicating limitations in nutrient uptake due to nutrient forms in the organic fertilizer. Our results showed a lower acquisition and utilization efficiency for the organic fertilizer, proposing the necessity to improve either the timing of bio-availability of organic fertilizers or the use of soil amendments.Publication Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis(2024) Nkebiwe, Peteh Mehdi; Stevens Lekfeldt, Jonas D.; Symanczik, Sarah; Thonar, Cécile; Mäder, Paul; Bar-Tal, Asher; Halpern, Moshe; Biró, Borbala; Bradáčová, Klára; Caniullan, Pedro C.; Choudhary, Krishna K.; Cozzolino, Vincenza; Di Stasio, Emilio; Dobczinski, Stefan; Geistlinger, Joerg; Lüthi, Angelika; Gómez-Muñoz, Beatriz; Kandeler, Ellen; Kolberg, Flora; Kotroczó, Zsolt; Kulhanek, Martin; Mercl, Filip; Tamir, Guy; Moradtalab, Narges; Piccolo, Alessandro; Maggio, Albino; Nassal, Dinah; Szalai, Magdolna Zita; Juhos, Katalin; Fora, Ciprian G.; Florea, Andreea; Poşta, Gheorghe; Lauer, Karl Fritz; Toth, Brigitta; Tlustoš, Pavel; Mpanga, Isaac K.; Weber, Nino; Weinmann, Markus; Yermiyahu, Uri; Magid, Jakob; Müller, Torsten; Neumann, Günter; Ludewig, Uwe; de Neergaard, AndreasBiostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.Publication Estimation of the P fertilizer demand of China using the LePA model(2021) Yu, Wenjia; Li, Haigang; Nkebiwe, Peteh Mehdi; Li, Guohua; Müller, Torsten; Zhang, Junling; Shen, JianboModern phosphate (P) fertilizers are sourced from P rock reserves, a finite and dwindling resource. Globally, China is the largest producer and consumer of P fertilizer and will deplete its domestic reserves within 80 years. It is necessary to avoid excess P input in agriculture through estimating P demand. We used the legacy P assessment model (LePA) to estimate P demand based on soil P management at the county, regional, and country scales according to six P application rate scenarios: (1) rate in 2012 maintained; (2) current rate maintained in low-P counties and P input stopped in high-P counties until critical Olsen-P level (CP) is reached, after which rate equals P-removal; (3) rate decreased to 1–1.5 kg ha−1 year−1 in low-P counties after CP is reached and in high-P counties; (4) rate in each county decreased to 1–8 kg ha−1 year−1 after soil Olsen-P reached CP in low P counties; (5) rate in each county was kept at P-removal rate after reduction; (6) P input was kept at the rate lower than P-offtake rate after reduction. The results showed that the total P fertilizer demand of China was 750 MT P2O5, 54% of P fertilizer can be saved from 2013 to 2080 in China, and soil Olsen-P of all counties can satisfy the demand for high crop yields. The greatest potential to decrease P input was in Yangtze Plain and South China, which reached 60%. Our results provide a firm basis to analyze the depletion of P reserves in other countries.Publication Fertilizer placement and the potential for its combination with bio-effectors to improve crop nutrient acquisition and yield(2016) Nkebiwe, Peteh Mehdi; Müller, TorstenEven when total nitrogen (N) and phosphorus (P) concentrations in most agricultural soils are high, the concentrations of plant-available N and P fractions are often inadequate for acceptable yield. In comparison to conventional fertilizer application by homogenous broadcast over the soil surface (with or without subsequent incorporation), fertilizer placement in defined soil areas/volumes close to seeds or crop roots is a more effective application method to enhance the plant-availability of applied fertilizers. Nevertheless, considerable root growth in subsurface nutrient patches or around concentrated fertilizer-depots (and/or improved nutrient influx rates in roots) is a prerequisite for improved uptake of placed nutrients. Furthermore, zones with intense rooting around placed fertilizer depots (“rhizosphere hotspots”) with high concentrations of organic nutrients released as root exudates may be favorable for the survival and establishment of inoculated plant-growth-promoting microorganisms (PGPMs), which mobilize nutrients in soil to favor plant growth. In the last three decades, several published field studies comparing fertilizer placement to fertilizer broadcast arrived at different and often conflicting results regarding their effects on yield and nutrient status of various crops. For this reason, the first task was to conduct a Meta-analysis on data in published peer-reviewed field studies on fertilizer placement that met a set of pre-defined criteria for inclusion. We investigated the relative effect of fertilizer placement for specific fertilizer formulations (e.g. NH4+ and CO(NH2)2 without or in combination with soluble P (HPO42-; H2PO4-); soluble K; solid or liquid manure) in a precise restricted area on surface or subsurface soil in comparison to fertilizer broadcast on yield, nutrient concentration and content in above-ground plant parts. We utilized data from a total of 40 field studies published between 1982 and 2015 (85% of studies published from 2000) that met our criteria. We used the method of “baseline contrasts” to compare different fertilizer placement treatments to fertilizer broadcast as a common control or baseline treatment. Results showed that overall, fertilizer placement led to +3.7% higher yields, +3.7% higher concentrations of nutrients in above-ground plant parts and +11.9% higher contents of nutrients also in above-ground plant parts than fertilizer broadcast application. Placement depth had a strong effect of the outcome of fertilizer placement because relative placement effects increased with increasing fertilizer placement depth. Composition of fertilizer formulations was also an important factor. High yields of fertilizer placement relative to fertilizer broadcast application were obtained for CO(NH2)2 in combination with soluble P (HPO42-; H2PO4-) (+27%) or NH4+ in combination with HPO42-; H2PO4- (+15%) (Nkebiwe et al., 2016 a: Field Crops Research 196: 389–401). The next aim was to investigate the effect of fertilizer placement in subsurface soil in combination with application of bio-effectors (BEs) (PGPMs and natural active substances such as humic acids and seaweed extracts) on root growth of crop plants, establishment of inoculated PGPM in the rhizosphere, grain and biomass production as well as plant nutrient status for maize (Zea mays L) and wheat (Triticum aestivum L) cultures. Through various pot and rhizobox experiments, we observed that placement of a subsurface concentrated NH4+-fertilizer depot stabilized with the nitrification inhibitor DMPP (3,4-di-methylpyrazolphosphate) induced dense rooting around the depot contributing to more efficient exploitation of the depot. For this, it was crucial the N persisted in the depot mainly as poorly mobile NH4+, in order to induce localized depot-zone root-growth as well as favorable chemical and biological changes in the rhizosphere to improve N and P uptake by crop plants. Through in vitro culture experiments on solid and liquid media, we could show that via acidification of the growth media, several selected microbial BEs were capable to solubilize sparingly soluble inorganic phosphates and also that these BEs showed considerable tolerance to high concentrations of NH4+ und DMPP. The latter indicated a potential for the BEs to colonize plant roots in NH4+-rich well rooted soil zones around a subsurface NH4+-fertilizer depot (Nkebiwe et al., 2016 c: Manuscript submitted). Through further pot experiments and four others experiments as Bachelor and Master theses conduction under my supervision, we observed that certain BEs that readily solubilized tri-calcium phosphates in vitro were able to mobilize rock phosphate (RP) applied in soil-based substrates when N was supplied as stabilized NH4++DMPP, thereby contributing to enhanced P uptake and growth of maize and wheat plants. The bacterial BE Pseudomonas sp. DSMZ 13134 and BE consortia products containing bacteria and fungi such as CombiFectorA were good candidates. BE-induced RP-solubilzation occurred mainly in substrates with low CaCO3 contents indicating low P sorption capacity for neutral and moderately alkaline soils. With CombiFectorA, maize P-acquisition from sewage sludge ash could be enhanced, thus increasing the efficiency of a sparingly soluble fertilizer based of recycled wastes. Possible explanations for the beneficial effects of best performing BEs to improve plant growth were enhanced solubility of sparingly soluble P fertilizers via acidification of the rhizosphere and release of nutrient-chelating substances as well as improvement of root growth for better spatial interception of nutrients (Nkebiwe et al., 2016 d: Manuscript in preparation). Alongside, more greenhouse and two field experiments (grain maize 2014 and maize silage 2015) were designed, planned, conducted and evaluated. A peer-reviewed paper from this work has already been published (Nkebiwe et al., 2016 b: Chemical and Biological Technologies in Agriculture 3:15). In the greenhouse and experiments, placement of a concentrated stabilized NH4+-fertilizer depot led to improved root and shoot growth, and increased shoot N and P contents. Through intense root growth of maize around the NH4+-depot, increased root-colonization by Pseudomonas sp. DSMZ 13134 close to seeds could be observed. In the field, many weeks after subsurface placement of the concentrated stabilized NH4+-depot, it could be shown that N considerably persisted in the depot-zone as NH4+, which strongly induced depot-zone root growth. Placement of the NH4+-depot led to +7.4 % increase in grain yield of maize (2014) and +5.8% increase in maize silage yield (2015) in comparison to fertilizer broadcast. Placement of Pseudomonas sp. DSMZ 13134 inoculum in the sowing row let to +7.1% increase in yield of maize silage (2015) in comparison to the non-inoculated control. In total, these results showed that precise placement of specific fertilizer formulations in combination with the application of selected PGPMs can lead to improved plant growth, improved N and P uptake with a potential to save resources.Publication A global network meta-analysis of the promotion of crop growth, yield, and quality by bioeffectors(2022) Herrmann, Michelle Natalie; Wang, Yuan; Hartung, Jens; Hartmann, Tobias; Zhang, Wei; Nkebiwe, Peteh Mehdi; Chen, Xinping; Müller, Torsten; Yang, HuaiyuBioeffector (BE) application is emerging as a strategy for achieving sustainable agricultural practices worldwide. However, the effect of BE on crop growth and quality is still controversial and there is still no adequate impact assessment that determines factors on the efficiency of BE application. Therefore, we carried out a network metaanalysis on the effect of BEs using 1,791 global observations from 186 studies to summarize influencing factors and the impact of BEs on crop growth, quality, and nutrient contents. The results show that BEs did not only improve plant growth by around 25% and yield by 30%, but also enhanced crop quality, e.g., protein (55% increase) and soluble solids content (75% increase) as well as aboveground nitrogen (N) and phosphate (P) content by 28 and 40%, respectively. The comparisons among BE types demonstrated that especially non-microbial products, such as extracts and humic/amino acids, have the potential to increase biomass growth by 40–60% and aboveground P content by 54–110%. The soil pH strongly influenced the efficiency of the applied BE with the highest effects in acidic soils. Our results showed that BEs are most suitable for promoting the quality of legumes and increasing the yield of fruits, herbs, and legumes. We illustrate that it is crucial to optimize the application of BEs with respect to the right application time and technique (e.g., placement, foliar). Our results provide an important basis for future research on the mechanisms underlying crop improvement by the application of BEs and on the development of new BE products.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization: A study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, TorstenIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Phosphate fertilizer type and liming affect the growth and phosphorus uptake of two maize cultivars(2023) Ning, Fangfang; Nkebiwe, Peteh Mehdi; Hartung, Jens; Munz, Sebastian; Huang, Shoubing; Zhou, Shunli; Graeff-Hönninger, SimoneIn the context of phosphorus (P) exhaustion and low P use efficiency (PUE) in crop production, a field trial was designed on a low-P soil in southwestern Germany in 2020 and 2021 to investigate the effects of P fertilizer type and liming on maize growth and P uptake and PUE. The experimental factors were (i) two P fertilizer types, rock phosphate (RP) and diammonium phosphate (DAP); (ii) lime application, lime and no lime; and (iii) two maize cultivars. The results showed that RP resulted in a lower leaf area index and light interception compared with DAP, a 33% lower silage yield, and a 29% lower P content at harvest. The PUE of RP was 18%, which was 37% lower than DAP. Soil liming reduced shoot biomass and led to 35% less shoot P content at the six-leaf stage. The maize cultivar Stabil expressed higher yielding and P acquisition characteristics. In conclusion, DAP cannot be replaced by placed RP, regardless of the lime application in silage maize production in this study. Future research on the PUE of maize cultivars should also consider root characteristics in response to P fertilizer type and soil pH.