Browsing by Person "Lewin, Eva"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Integrating perennial biomass crops into crop rotations: How to remove miscanthus and switchgrass without glyphosate(2023) Lewin, Eva; Kiesel, Andreas; Magenau, Elena; Lewandowski, IrisPerennial energy grasses have gained attention in recent years as a promising resource for the bioeconomy because of their benign environmental profile, high stress tolerance, high biomass yields and low input requirements. Currently, strong breeding efforts are being made to extend the range of commercially available miscanthus and switchgrass genotypes. In order to foster farmers' acceptance of these crops, and especially of novel hybrids, more information is required about how they can be efficiently integrated into cropping rotations, how they can be removed at the end of their productive lifespan, and what effect they have on subsequently grown crops. Farmers in Europe are meanwhile increasingly constrained in the methods available to them to remove these crops, and there is a risk that the herbicide glyphosate, which has been used in many studies to remove them, will be banned in coming years. This study looks at the removal of seven‐year‐old stands of miscanthus and switchgrass over 1 year at an experimental site in Southern‐Germany. Three novel miscanthus genotypes were studied, alongside one variety of switchgrass, and the impact of each crop's removal on the yield of maize grown as a follow‐on crop was examined. A combination of soil tillage and grass herbicides for maize cultivation was successful in controlling miscanthus regrowth, such that yields of maize grown after miscanthus did not differ significantly from yields of maize grown in monoculture rotation (18.1 t dry biomass ha−1). Yields of maize grown after switchgrass (14.4 t dry biomass ha−1) were significantly lower than maize in monoculture rotation caused by insufficient control of switchgrass regrowth by the applied maize herbicide. Although some regrowth of miscanthus and switchgrass was observed in the follow‐on crop maize, complete eradication of both crops was achieved by subsequent winter wheat cultivation.Publication Testing agronomic treatments to improve the establishment of novel miscanthus hybrids on marginal land(2025) Lewin, Eva; Clifton-Brown, John; Jensen, Elaine; Lewandowski, Iris; Krzyżak, Jacek; Pogrzeba, Marta; Hartung, Jens; Wolfmüller, Cedric; Kiesel, Andreas; Lewin, Eva; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Clifton-Brown, John; Department of Agronomy and Plant Breeding, Justus Libeig University Giessen, 35392 Giessen, Germany; Jensen, Elaine; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK; Lewandowski, Iris; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Krzyżak, Jacek; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Pogrzeba, Marta; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Hartung, Jens; Sustainable Agriculture and Energy Systems Department, University of Applied Science Weihenstephan-Triesdorf, 91746 Freising, Germany; Wolfmüller, Cedric; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Kiesel, Andreas; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Fujii, YoshiharuMiscanthus is considered a promising candidate for the cultivation of marginal land. This land poses unique challenges, and experiments have shown that the “establishment phase” is of paramount importance to the long-term yield performance of miscanthus. This experiment analyzes novel miscanthus hybrids and how their establishment on marginal land can be improved through agronomic interventions. Experiments took place at two sites in Germany: at Ihinger Hof, with a very shallow soil profile and high stone content, and at Reichwalde, where the soil was repurposed river sediment with low organic matter, high stone content, and a compacted lower horizon. These marginal conditions functioned as test cases for the improvement of miscanthus establishment agronomy. Four hybrids ( Miscanthus x giganteus , Gnt10, Gnt43, and Syn55) and agronomic treatments such as plastic mulch film, miscanthus mulch, inoculation with mycorrhizal fungi, and fertilization were tested in two years at both sites in 2021 and 2022. Specific weather conditions and the timing of planting were strong determinants of establishment success and no single treatment combination was found that consistently increased the establishment success. Plastic mulch films were found to hinder rather than help establishment in both these locations. Chipped miscanthus mulch caused nitrogen immobilization and stunted plant growth. At Ihinger Hof the novel seed-based miscanthus hybrid Gnt43 produced twice the biomass of other hybrids (7 t ha −1 ) in the first growing season. Gnt10 yielded well in 2021 and showed impressive tolerance to water stress in the summer of 2022. No treatment combination was found that consistently increased the establishment success of miscanthus hybrids across sites and years. Novel genotypes consistently outperformed the standard commercial miscanthus hybrid Miscanthus x giganteus . Gnt10 may be a promising candidate for the cultivation of water-stress-prone marginal lands, due to its isohydric behavior and high yield potential.