Browsing by Person "Johnson, Kristian"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Chamber‐based system for measuring whole‐plant transpiration dynamics(2022) Pieters, Alejandro; Giese, Marcus; Schmierer, Marc; Johnson, Kristian; Asch, FolkardMost of our insights on whole‐plant transpiration (E) are based on leaf‐chamber measurements using water vapor porometers, IRGAs, or flux measurements. Gravimetric methods are integrative, accurate, and a clear differentiation between evaporation and E can be made. Water vapor pressure deficit (VPD) is the driving force for E but assessing its impact has been evasive, due to confounding effects of other climate drivers. We developed a chamber‐based gravimetric method, in which whole plant response of E to VPD could be assessed, while keeping other environmental parameters at predetermined values. Stable VPD values (0.5–3.7 kPa) were attained within 5 min after changing flow settings and maintained for at least 45 min. Species differing in life form and photosynthetic metabolism were used. Typical runs covering the range of VPDs lasted up to 4 h, preventing acclimation responses or soilborne water deficit. Species‐specific responses of E to VPD could be identified, as well as differences in leaf conductance. The combined gravimetric‐chamber‐based system presented overcomes several limitations of previous gravimetric set ups in terms of replicability, time, and elucidation of the impact of specific environmental drivers on E, filling a methodological gap and widening our phenotyping capabilities.Publication Genotypic responses of rice to alternate wetting and drying irrigation in the Mekong Delta(2023) Johnson, Kristian; Vo, Thuong Ti Bach; Van Nha, Duong; Asch, FolkardIn the Vietnamese Mekong Delta (VMD), alternate wetting and drying (AWD) in rice (Oryza sativa L.) production during the dry season has the potential to reduce greenhouse gas emission and freshwater use. However, its effect on yield compared with continuously flooded systems can vary. To evaluate the effect of AWD on yield and yield‐forming processes on genotypes commonly grown in the VMD, field trials over two consecutive dry seasons were conducted at the Loc Troi Group's agricultural research station in the VMD. We observed a significant yield reduction, 7% on average, across all varieties grown under AWD. Analysis of yield components showed that under AWD, genotypes on average produced more tillers, but fewer spikelets, suffered greater spikelet sterility and had a lower 1000 grain weight. The size of this effect differed between dry seasons. Accordingly, we were able to identify and characterize genotypes better suited to AWD. We also could relate shifts in sink‐source relationships to the overlap of drying events and key phenological stages other than flowering. Our study shows how successful implementation of AWD requires adaptation to both environment and genotype.Publication Traits contributing to salinity tolerance in rice genotypes from the Mekong Delta(2023) Johnson, Kristian; Vu, Duy Hoang; Asch, FolkardIncreasing sea level rise and subsequent salinization in mega deltas, such as the Vietnamese Mekong Delta (VMD), pose a risk to rice (Oryza sativa L.) production during the dry season. This study investigated the salinity resistance of a selection of common rice genotypes from the VMD along with an international check, IR64. The 20 rice varieties were grown hydroponically for 5 weeks in a greenhouse and then exposed to three levels of NaCl concentration (0 mM, 50 mM and 100 mM) over a period of 2 weeks to determine their susceptibility to salinity. Rice plants were scored and SPAD (leaf greenness) and PRI (photochemical reflectance index) were measured on the youngest fully developed leaf on the main tiller. After harvesting the 7‐week‐old plants, biomass and ion (K+, Cl−, Na+) content were determined by organ across all tillers. Averaged over all varieties, both at 50 mM and 100 mM NaCl, there was a significant reduction in plant biomass, 39% and 52% respectively. However, the effect of the NaCl treatments and the uptake of Cl− and Na+ were significantly different between varieties (p < .0001). Using biomass and ion content as part of a multivariate analysis, varieties were classified according to their susceptibility to salinity and their predominant strategy towards managing ion accumulation. The grouped varieties were further characterized by patterns in Cl− and Na+ partitioning and nondestructive parameters such as SPAD and PRI.Publication Varietal effects on Greenhouse Gas emissions from rice production systems under different water management in the Vietnamese Mekong Delta(2023) Vo, Thi Bach Thuong; Johnson, Kristian; Wassmann, Reiner; Sander, Bjoern Ole; Asch, FolkardRice production accounts for 15% of the national Greenhouse Gas (GHG) emissions and Vietnam aims at reducing emissions from rice production by focusing on changing farming practices. However, the potential for mitigation through the selection of different rice varieties is still poorly understood. A two‐year field screening of 20 rice varieties under continuous flooding (CF) and alternate wetting and drying (AWD) irrigation was conducted in the Vietnamese Mekong Delta (VMD), Vietnam, employing the closed chamber method for assessing GHG emissions. The results confirmed that varietal variation was the largest for methane (CH4) emissions under CF. Across the varietal spectrum, CH4 emissions were more important than nitrous oxide (N2O) (accounts for less than 2% of the CO2e) with the lowest emitting variety showing 243 kg CH4 ha−1 and the highest emitting variety showing 398 kg CH4 ha−1 emissions as compared to 0.07 kg N2O ha−1 and 0.76 kg N2O ha−1 emissions, respectively. Under AWD, CH4 emissions were generally strongly reduced with the varietal effect being of minor importance. Compared with IPCC default values, the data set from the two seasons yielded higher Emission Factors (EFs) under CF (2.92 and 3.00 kg ha−1 day−1) as well as lower Scaling Factors (SFs) of AWD (0.41 and 0.38). In the context of future mitigation programs in the VMD, the dry season allows good control of the water table, so varietal selection could maximize the mitigation effect of AWD that is either newly introduced or practised in some locations already. In the wet seasons, AWD may be difficult to implement whereas other mitigation options could be implemented such as selecting low‐emitting cultivars.Publication Varietal effects on methane intensity of paddy fields under different irrigation management(2023) Vo, Thi Bach Thuong; Johnson, Kristian; Wassmann, Reiner; Sander, Bjoern Ole; Asch, FolkardAlternate wetting and drying irrigation (AWD) has been shown to decrease water use and trace gas emissions from paddy fields. Whereas genotypic water use shows little variation, it has been shown that rice varieties differ in the magnitude of their methane emissions. Management and variety‐related emission factors have been proposed for modelling the impact of paddy production on climate change; however, the magnitude of a potential reduction in greenhouse gas emissions by changing varieties has not yet been fully assessed. AWD has been shown to affect genotypic yields and high‐yielding varieties suffer the greatest loss when grown under AWD. The highest yielding varieties may not have the highest methane emissions; thus, a potential yield loss could be compensated by a larger reduction in methane emissions. However, AWD can only be implemented under full control of irrigation water, leaving the rainy seasons with little scope to reduce methane emissions from paddy fields. Employing low‐emitting varieties during the rainy season may be an option to reduce methane emissions but may compromise farmers’ income if such varieties perform less well than the current standard. Methane emissions and rice yields were determined in field trials over two consecutive winter/spring seasons with continuously flooded and AWD irrigation treatments for 20 lowland rice varieties in the Mekong Delta of Vietnam. Based on the results, this paper investigates the magnitude of methane savings through varietal choice for both AWD and continuous flooding in relation to genotypic yields and explores potential options for compensating farmers’ mitigation efforts.