Browsing by Person "Huber, Korinna"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Publication Dietary L-carnitine affects leukocyte count and function in dairy cows around parturition(2022) Kononov, Susanne Ursula; Meyer, Jennifer; Frahm, Jana; Kersten, Susanne; Kluess, Jeannette; Bühler, Susanne; Wegerich, Anja; Rehage, Jürgen; Meyer, Ulrich; Huber, Korinna; Dänicke, SvenIn early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for β-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.Publication Dietary L-carnitine supplementation modifies blood parameters of mid-lactating dairy cows during standardized lipopolysaccharide-induced inflammation(2024) Seemann, Leonie; Frahm, Jana; Kersten, Susanne; Bühler, Susanne; Meyer, Ulrich; Visscher, Christian; Huber, Korinna; Dänicke, SvenL-carnitine, available as feed additive, is essential for the beta-oxidation of free fatty acids in the mitochondrial matrix. It provides energy to immune cells and may positively impact the functionality of leukocytes during the acute phase response, a situation of high energy demand. To test this hypothesis, German Holstein cows were assigned to a control group (CON, n = 26) and an L-carnitine supplemented group (CAR, n = 27, rumen-protected L-carnitine product: 125 g/cow/d, corresponded to total L-carnitine intake: 25 g/cow/d, supplied with concentrate) and received an intravenous bolus injection of lipopolysaccharides (LPS, 0.5 µg/kg body weight, E. coli) on day 111 postpartum as a model of standardized systemic inflammation. Blood samples were collected from day 1 ante injectionem until day 14 post injectionem (pi), with frequent sampling through an indwelling venous catheter from 0.5 h pi to 12 h pi. All parameters of the white blood cell count responded significantly to LPS, while only a few parameters were affected by L-carnitine supplementation. The mean eosinophil count, as well as the percentage of basophils were significantly higher in CAR than in CON over time, which may be due to an increased membrane stability. However, phagocytosis and production of reactive oxygen species by leukocytes remained unchanged following L-carnitine supplementation. In conclusion, although supplementation with 25 g L-carnitine per cow and day resulted in increased proportions of specific leukocyte populations, it had only minor effects on the functional parameters studied in mid-lactating dairy cows during LPS-induced inflammation, and there was no evidence of direct improvement of immune functionality.Publication Effects of strain, lifespan and dietary myo-inositol sources on poultry metabolism(2020) Gonzalez Uarquin, Duvan Fernando; Huber, KorinnaPoultry production has shown a significant increase during the last decade. Meat and egg industry rapid growth implicates accelerating metabolic rate and general performance of birds. To maintain a high level of production, several strategies to achieve optimal raising and feeding have been implemented. Previous studies demonstrated the importance of MI metabolism on animal physiology; however, at present there is a substantial lack of information about the roles of MI and its metabolism in poultry. For instance, no information is available about MI concentration in organs of poultry. Moreover, it remains no elucidated, which are the effects of dietary sources of MI such as dietary phytase or pure MI supplementation. This thesis focused on gaining a comprehensive understanding of the potential roles of strain, productive period, and dietary sources of MI on poultry metabolism. To obtain the state of the art research on MI metabolism and its dietary sources in poultry, a comprehensive review of dietary MI was written (manuscript 1, chapter 3). This review revised information about MI in poultry such as feed sources, transport and cell metabolism, physiological meaning, and the influence of dietary MI in poultry. The revision indicated that MI appears to play critical roles in several different metabolic pathways so that understanding them could be an essential approach for future research in poultry. The second study was performed to study the effects of phytase and pure MI supplementation on the metabolite profile of broilers (manuscript 2, chapter 3). It was observed that phytase supplementation affected differently the metabolite profile than the supplementation of pure MI. Metabolites affected by phytase comprised several groups of metabolites such as acylcarnitines, phosphatidylcholines, sphingomyelins, lysophosphatidylcholines, and biogenic amines, whereas pure MI supplementation increased plasma concentrations of dopamine and serotonin. The third study was performed to get preliminary information about the effects caused by dietary phytase on systemic MI on the gastrointestinal tract, blood, and organs MI of broiler chickens (manuscript 3, chapter 3). Supplementation of 1500 FTU phytase/kg feed increased plasma and kidney MI concentrations. Plasma MI correlated negatively with InsP6 and positively with intestinal MI concentrations. A fourth study gave a general description of MI concentrations and general metabolite profile during the productive life of Lohmann Classic Brown and Lohmann LSL Classic laying hens. It was found that productive period affected MI and MI key enzymes expression. Moreover, the analyses showed differences in metabolite profiles being the onset of egg production, a determinant point. Differences were attributed to different groups of metabolites such as amino acids, biogenic amines, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins. The above mentioned, indicated each strain could express different MI concentrations and metabolite profiles during distinct productive periods what should be considered to future interventions. To conclude, findings from these investigations suggested intrinsic traits such as breed and stage of production and diet could affect MI and MI key enzymes expression as well as metabolite profiles. Future studies are needed to establish the roles of MI on poultry metabolism.Publication Modulation of hepatic insulin and glucagon signaling by nutritional factors in broiler chicken(2022) Petrilla, Janka; Mátis, Gábor; Mackei, Máté; Kulcsár, Anna; Sebők, Csilla; Papp, Márton; Gálfi, Péter; Fébel, Hedvig; Huber, Korinna; Neogrády, ZsuzsannaInfluencing the endocrine metabolic regulation of chickens by nutritional factors might provide novel possibilities for improving animal health and productivity. This study was designed to evaluate the impact of dietary cereal type (wheat-based (WB) vs. maize-based (MB) diets), crude protein level (normal (NP) vs. lowered (LP)), and sodium (n-)butyrate (1.5 g/kg diet) supplementation (vs. no butyrate) on the responsiveness of hepatic glucagon receptor (GCGR), insulin receptor beta (IRβ) and mammalian target of rapamycin (mTOR) in the phase of intensive growth of chickens. Liver samples of Ross 308 broiler chickens (Gallus gallus domesticus) were collected on day 21 for quantitative real-time polymerase chain reaction and Western blot analyses. Hepatic GCGR and mTOR gene expressions were up-regulated by WB and LP diet. GCGR and IRβ protein level decreased in groups with butyrate supplementation; however, the quantity of IRβ and mTOR protein increased in WB groups. Based on these data, the applied dietary strategies may be useful tools to modulate hepatic insulin and glucagon signaling of chickens in the period of intensive growth. The obtained results might contribute to the better understanding of glycemic control of birds and increase the opportunity of ameliorating insulin sensitivity, hence, improving the production parameters and the welfare of broilers.Publication Mothers’ parity and weaning age influence the transition from liquid to solid feed in female Holstein calves(2023) Schwarzkopf, Sarah; Huber, KorinnaMilchbauern streben aus wirtschaftlichen Gründen ein junges Erstkalbealter an. Da diese jungen Färsen während der Trächtigkeit noch wachsen, könnten sie mit ihrem Kalb um Nährstoffe konkurrieren. Daher können die Parität der Mütter und die damit verbundene Nährstoffversorgung während der Trächtigkeit die frühe Entwicklung beeinflussen. Kälber werden als funktionell monogastrische Tiere geboren, die auf Milch oder Milchaustauscher zur Ernährung angewiesen sind. Um den Status eines Wiederkäuers zu erreichen und festes Futter als Nahrungsquelle zu verwenden, müssen sich viele digestive, endokrine und biochemische Funktionen ändern. Daher ist das Absetzen ein kritisches und potenziell stressiges Ereignis. Das durchschnittliche Absetzalter weiblicher Milchkälber beträgt 6 – 11 Wochen, was mit Stress einhergeht, der das Immunsystem, das Wachstum und die Magen-Darm-Entwicklung negativ beeinträchtigen kann. Daher kommt ein Aufschieben des Absetzens möglicherweise der Gesundheit und Entwicklung der Kälber zugute. Es verbessert das Wachstum, reduziert die mit dem Absetzen verbundene Belastung und erhöht möglicherweise das Alter bei der Entfernung aus der Herde. Die vorliegende Arbeit zielte darauf ab, die Auswirkungen von zwei Absetzaltersstufen und der Parität der Mütter auf die Entwicklung und Anpassung an die Entwöhnung zu identifizieren. Mittels eines Tierversuchs mit neunundfünfzig weiblichen Holstein-Kälbern wurden die Auswirkungen eines frühen (7 Wochen) und späten (17 Wochen) Absetzens auf Wachstum, Verhalten, Pansen- und Magen-Darm-Entwicklung und Anpassung des Leber- und Nierenstoffwechsels getestet. Darüber hinaus wurde der Einfluss unterschiedlicher Absetzalter auf Kälber von primiparen und multiparen Kühen berücksichtigt. Proben wurden kontinuierlich im Alter von 8 Tagen (Versuchstag 1) bis zum Alter von 21 Wochen (Versuchstag 140) genommen. Die Analysen und Ergebnisse werden in drei begutachteten wissenschaftlichen Arbeiten beschrieben und im Folgenden zusammengefasst. Die Wachstumsleistung wurde anhand von Lebendgewicht, Lebendgewichtszunahme, Widerrist- und Hüfthöhe, Brustumfang, Rücken- und Körperlänge bewertet. Der Energiestoffwechsel und die Leberfunktion wurden durch Messung der Serumkonzentrationen von Glukose, Insulin, Harnstoff, Cholesterin, Leptin, Beta-hydroxybutyrate und nicht-veresterten Fettsäuren quantifiziert (Manuskript 1). Das Verhalten der Tiere wurde beobachtet unterteilt in Ruhe-, Kau- und Aktivverhalten, um Rückschlüsse auf Anzeichen von Hunger und Stress sowie der Pansenentwicklung zu ziehen. Die Pansenentwicklung und entsprechende metabolische und adaptive Veränderungen im Säure-Basen-Stoffwechsel wurden durch Messung des pH-Wertes in Urin, Kot und Speichel sowie stickstoffhaltiger Metaboliten im Urin bewertet (Manuskript 2). Das Mikrobiom in Kotproben wurde analysiert, um die Reifung des Magen-Darm-Trakts zu beurteilen. Um Einblicke in metabolische Anpassungen zu erhalten, wurde eine umfassende Anzahl an Metaboliten gemessen. Dazu gehörten Aminosäuren, biogene Amine, Acylcarnitine und Sphingomyeline (Manuskript 3). Ein späteres Absetzen im Alter von 17 Lebenswochen wirkt sich positiv auf das Körperwachstum und die Anpassung des Energie- und Säure-Basen-Stoffwechsels aus (Manuskript 1; Manuskript 2). Der pH-Wert des Speichels stieg während des Experiments im Laufe der Zeit an, unabhängig vom Absetzalter oder der Parität der Mutter (Manuskript 2). Da ein alkalischer pH-Wert im Speichel für dessen Pufferkapazität wichtig ist, unterstreicht dies, wie wichtig es ist, das Absetzen zu verzögern. Die gastrointestinale Entwicklung war durch eine längere Milchaustauscheraufnahme nicht beeinträchtigt, sondern erreichte am Ende der Studie einen funktionellen Status. Faktoren der Pansenentwicklung (Manuskript 2) und die Mikrobiota im Kot (Manuskript 3) passten sich schnell an und deuteten auf eine altersabhängige Reifung hin. Die analysierten Metaboliten wiesen auf ausgeprägte Effekte eines frühen Absetzens auf verschiedene Stoffwechselwege hin (Manuskript 3). Insbesondere die Gluconeogenese in der Leber schienen bei früh abgesetzen Kälbern unzureichend zu sein. Die Leptinkonzentrationen und die Rückenlänge waren bei früh abgesetzten Kälbern primiparer Mütter reduziert, nicht jedoch bei spät abgesetzten Kälbern primiparer Mütter (Manuskript 1). Daher profitieren Kälber von primiparen Kühen besonders von einem späteren Absetzen. Die Ergebnisse zeigten, dass ein Absetzen im Alter von 7 Wochen nicht empfohlen werden kann, da es zu abrupten und möglicherweise belastenden Stoffwechselveränderungen und einer gestörten Reifung verschiedener Organe und deren Stoffwechselfunktionen führte. Die aktuelle Studie zeigte, dass die Verzögerung des Absetzens auf ein Alter von 17 Wochen einen gleichmäßigen Übergang verschiedener physiologischer Funktionen in den Wiederkäuerstatus ermöglicht. Deshalb schien es die mit dem Absetzen verbundenen Stoffwechselprobleme und den Stress zu reduzieren. Weitere Forschung über das Absetzen, unter Berücksichtigung der Aufzuchtkosten und späteren Milchleistung und Gesundheit, ist erforderlich.Publication Multi-omics reveals different strategies in the immune and metabolic systems of high-yielding strains of laying hens(2022) Iqbal, Muhammad Arsalan; Reyer, Henry; Oster, Michael; Hadlich, Frieder; Trakooljul, Nares; Perdomo-Sabogal, Alvaro; Schmucker, Sonja; Stefanski, Volker; Roth, Christoph; Camarinha Silva, Amélia; Huber, Korinna; Sommerfeld, Vera; Rodehutscord, Markus; Wimmers, Klaus; Ponsuksili, SiriluckLohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially important laying hen strains due to their high egg production and excellent commercial suitability. The present study integrated multiple data sets along the genotype-phenotype map to better understand how the genetic background of the two strains influences their molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune cells, inositol phosphate metabolites, minerals, and hormones from different organs of the two hen strains. All complex data sets were pre-processed, normalized, and compatible with the mixOmics platform. The most discriminant features between two laying strains included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and 16 metabolites. The expression of specific miRNAs and the abundance of immune cell types were related to the enrichment of immune pathways in the LSL strain. In contrast, more microbial taxa specific to the LB strain were identified, and the abundance of certain microbes strongly correlated with host gut transcripts enriched in immunological and metabolic pathways. Our findings indicate that both strains employ distinct inherent strategies to acquire and maintain their immune and metabolic systems under high-performance conditions. In addition, the study provides a new perspective on a view of the functional biodiversity that emerges during strain selection and contributes to the understanding of the role of host–gut interaction, including immune phenotype, microbiota, gut transcriptome, and metabolome.Publication The influence of L-carnitine on hematology and functional blood parameters of dairy cows with special focus on high resolution data around parturition(2023) Kononov, Susanne Ursula; Huber, KorinnaThe transition period, defined as three weeks before to three weeks after parturition, is one of the most critical times in the production cycle of dairy cows. On the one hand, cows have to cope with increased energy demand, while on the other hand, feed intake decreases due to stress and pain during parturition. This results in an negative energy balance and, consequently, at the beginning of body fat tissue mobilization. Lipomobilization increases the blood concentration of NEFA. This is accompanied by an increase in the blood concentration of ketone bodies, such as BHB. In addition to changes in energy metabolism, alterations in the immune function of dairy cows occur during the transition period. Stress and pain during calving lead to elevated blood levels of glucocorticoids, such as cortisol, which affect the immune system. Furthermore, the immune system is affected by increased concentrations of NEFA and BHB. At the same time, oxidative stress occurs due to an imbalance between the production of reactive oxygen species (ROS) and the activity of the antioxidative system. In general, the period around calving and its consequences constitute a very complex process influenced by many interdependent factors. One key factor in energy production is the quaternary amine L-carnitine (LC), which is necessary for the transport of short-chain fatty acids from the cytosol to the mitochondrial matrix. Furthermore, several studies have demonstrated the antioxidant and membrane-stabilizing effects of LC. This study aimed to investigate the effects of dietary LC supplementation on energy metabolism, hematology, and immune functions of dairy cows during the transition period. In addition, the first 72 h after calving were observed at high resolution to show the characteristic courses of the examined parameters, which, to the best of our knowledge, have not yet been analyzed. To attain this aim, 60 pluriparous Holstein Friesian cows were assigned to two groups based on their lactation number, body weight, body condition score, and fat-corrected milk yield from previous lactation. The LC group (CAR) received 25 g of rumen-protected LC. The study started 42 days before excepted calving and ended 110 days after parturition. To evaluate the performance and health of the animals, feed and milk samples were collected regularly, and feed intake, milk yield, body weight, and BCS were documented (Manuscript I). Additionally, NEB was calculated, and NEFA, BHB, and triglyceride concentrations in the blood were determined (Manuscript I). Also, the concentration of LC in the blood as well as that of the precursors γ-butyrobetaine (γBB), Nε-trimethyllysine (TML), and acetylcarnitine (ACA) was examined (Manuscript I). Red blood cell counts and antioxidant enzyme activity were measured to obtain more information on the oxygen supply and antioxidant status of the animals (Manuscript II). To evaluate the immunological status and inflammatory response, white blood cell count, phagocytic activity, ROS production, and lymphocyte populations were analyzed (Manuscript III). Dietary supplementation with LC increases blood LC, γBB, and ACA concentrations. Furthermore, LC supplementation resulted in better utilization of NEFA and TG. This was manifested by an increased blood concentration of triglycerides and a lower concentration of NEFA. Moreover, increased levels of platelets and eosinophils were detected in the CAR group, confirming the membrane-stabilizing effect of LC and the associated longer cell lifespan. Additionally, immunological functions were affected by LC supplementation. The ability of polymorphonuclear cells (PMN) to phagocytose bacteria was analyzed by the mean fluorescence intensity (MFI) of ROS-producing PMN, and the phagocytic capacity decreased compared to the CON group. Simultaneously, the efficiency of ROS production by PMN increased in CAR cows. These results suggest an altered immune function around calving, but not suppression, as is often described in the literature. In addition, this study showed that calving affected almost all analyzed data. The strongest changes in hematology and cell function were found four hours after calving. Furthermore, the influence of LC supplementation on immunological parameters was observed in the first few hours after parturition, indicating that LC supplementation may have an effect at energetically critical times. In conclusion, the present study showed that dietary LC supplementation affected energy metabolism, cell vitality, and cell function during the critical period around calving. However, this study also showed the clear influences of calving, which may be even more pronounced than animal-specific differences. Future studies should record the LC supply of cells to enable a more detailed description of the energetic situation of cells such as blood cells.