Browsing by Person "Forkman, Johannes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: accuracy and precision(2021) Buntaran, Harimurti; Forkman, Johannes; Piepho, Hans-PeterMulti-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target population of environments. From a grower’s perspective, MET results must provide high accuracy and precision for predictions of genotype performance in new locations, i.e. the grower’s locations, which hardly ever coincide with the locations at which the trials were conducted. Linear mixed modelling can provide predictions for new locations. Moreover, the precision of the predictions is of primary concern and should be assessed. Besides, the precision can be improved when auxiliary information is available to characterize the targeted locations. Thus, in this study, we demonstrate the benefit of using environmental information (covariates) for predicting genotype performance in some new locations for Swedish winter wheat official trials. Swedish MET locations can be stratified into zones, allowing borrowing information between zones when best linear unbiased prediction (BLUP) is used. To account for correlations between zones, as well as for intercepts and slopes for the regression on covariates, we fitted random coefficient (RC) models. The results showed that the RC model with appropriate covariate scaling and model for covariate terms improved the precision of predictions of genotypic performance for new locations. The prediction accuracy of the RC model was competitive compared to the model without covariates. The RC model reduced the standard errors of predictions for individual genotypes and standard errors of predictions of genotype differences in new locations by 30–38% and 12–40%, respectively.Publication A REML method for the evidence‐splitting model in network meta‐analysis(2023) Piepho, Hans‐Peter; Forkman, Johannes; Malik, Waqas AhmedChecking for possible inconsistency between direct and indirect evidence is an important task in network meta‐analysis. Recently, an evidence‐splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for heterogeneity appears in both the mean and the variance structure. Thus, full maximum likelihood (ML) has been proposed for estimating the parameters of this model. Maximum likelihood is known to yield biased variance component estimates in linear mixed models, and this problem is expected to also affect the ES model. The purpose of the present paper, therefore, is to propose a method based on residual (or restricted) maximum likelihood (REML). Our simulation shows that this new method is quite competitive to methods based on full ML in terms of bias and mean squared error. In addition, some limitations of the ES model are discussed. While this model splits direct and indirect evidence, it is not a plausible model for the cause of inconsistency.