Browsing by Person "Fahmy, Ahmed Raouf"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Four-dimensional (4D) printing of dynamic foods - definitions, considerations, and current scientific status(2023) Fahmy, Ahmed Raouf; Derossi, Antonio; Jekle, MarioSince its conception, the application of 3D printing in the structuring of food materials has been focused on the processing of novel material formulations and customized textures for innovative food applications, such as personalized nutrition and full sensory design. The continuous evolution of the used methods, approaches, and materials has created a solid foundation for technology to process dynamic food structures. Four-dimensional food printing is an extension of 3D printing where food structures are designed and printed to perform time-dependent changes activated by internal or external stimuli. In 4D food printing, structures are engineered through material tailoring and custom designs to achieve a transformation from one configuration to another. Different engineered 4D behaviors include stimulated color change, shape morphing, and biological growth. As 4D food printing is considered an emerging application, imperatively, this article proposes new considerations and definitions in 4D food printing. Moreover, this article presents an overview of 4D food printing within the current scientific progress, status, and approaches.Publication Multi‐scale dough adhesion analysis: Relation between laboratory scale, pilot scale and human sensory(2023) Vogt, Ulrike Therese; Kwak, Ju Eun; Fahmy, Ahmed Raouf; Laukemper, Rita; Henrich, Alexander; Becker, Thomas; Jekle, MarioUndesired dough adhesion is still a challenge during the production of baked goods. There are various methods for determining the adhesive texture properties of dough. In the majority of scientific papers, dough stickiness is measured analytically by the force‐distance recording of dough detachment. In this study, we describe a new multi‐scale approach to compare dough adhesion phenomena in a laboratory, pilot sale and human sensory assessment. In it, the adhesive material properties of dough were investigated using a pilot scale toppling device representing dough adhesion behavior in the production process, in the laboratory by texture analysis with the Chen–Hoseney method and furthermore with a new, implemented non‐oral human sensory analysis. To simulate different dough adhesion behavior, the dough mechanical and adhesion properties were varied by applying dough‐modifying enzymes and different dough storage times. The structural changes in the different wheat dough system were compared by rheological characterization. By characterizing the different adhesion phenomena of the doughs, the sample with bacterial xylanase showed the highest values after 80 min of storage time in all three methods. Correlation analysis revealed a strong relationship between the detachment time (pilot scale) and human sensory assessment attributes (Force R = 0.81, Time R = 0.87, Distance R = 0.92, Stickiness R = 0.80) after 80 min of storage time. Even though human sensory assessment showed limits in the detectability of differences in dough adhesion behavior compared to the Chen–Hoseney method, it was better suited to predict machinability.