Browsing by Person "Damesa, Tigist Mideksa"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Weighting methods for variance heterogeneity in phenotypic and genomic data analysis for crop breeding(2019) Damesa, Tigist Mideksa; Piepho, Hans-PeterIn plant breeding programmes MET form the backbone for phenotypic selection, GS and GWAS. Efficient analysis of MET is fundamental to get accurate results from phenotypic selection, GS and GWAS. On the other hand inefficient analysis of MET data may have consequences such as biased ranking of genotype means in phenotypic data analysis, small accuracy of GS and wrong identification of QTL in GWAS analysis. A combined analysis of MET is performed using either single-stage or stage-wise (two-stage) approaches based on the linear mixed model framework. While single-stage analysis is a fully efficient approach, MET data is suitably analyzed using stage-wise methods. MET data often show within-trial and between-trial variance heterogeneities, which is in contradiction with the homogeneity of variance assumption of linear models, and these heterogeneities require corrections. In addition it is well documented that spatial correlations are inherent to most field trials. Appropriate remedial techniques for variance heterogeneities and proper accounting of spatial correlation are useful to improve accuracy and efficiency of MET analysis. Chapter 2 studies methods for simultaneous handling of within-trial variance heterogeneity and within-trial spatial correlation. This study is conducted based on three maize trials from Ethiopia. To stabilize variance Box-Cox transformation was considered. The result shows that, while the Box-Cox transformation was suitable for stabilizing the variance, it is difficult to report results on the original scale. As alternative variance models, i.e. power-of-the-mean (POM) and exponential models, were used to fix the variance heterogeneity problem. Unlike the Box-Cox method, the variance models considered in this study were successful to deal simultaneously with both spatial correlation and heterogeneity of variance. For analysis of MET data, two-stage analysis is often favored in practice over single-stage analysis because of its suitability in terms of computation time, and its ability to easily account for any specifics of each trial (variance heterogeneity, spatial correlation, etc). Stage-wise analyses are approximate in that they cannot fully reproduce a single-stage analysis because the variance–covariance matrix of adjusted means from the first-stage analysis is sometimes ignored or sometimes approximated and the approximation may not be efficient. Discrepancy of results between single-stage and two-stage analysis increases when the variance between trials is heterogeneous. In stage-wise analysis one of the major challenges is how to account for heterogeneous variance between trials at the second stage. To account for heterogeneous variance between trials, a weighted mixed model approach is used for the second-stage analysis. The weights are derived from the variances and covariances of adjusted means from the first-stage analysis. In Chapter 3 we compared single-stage analysis and two-stage analysis. A new fully efficient and a diagonal weighting matrix are used for weighting in the second stage. The methods are explored using two different types of maize datasets. The result indicates that single-stage analysis and two-stage analysis give nearly identical results provided that the full information on all effect estimates and their associated estimated variances and covariances is carried forward from the first to the second stage. GWAS and GS analysis can be conducted using a single-stage or a stage-wise approach. The computational demand for GWAS and GS increases compared to purely phenotypic analysis because of the addition of marker data. Usually researchers compute genotype means from phenotypic MET data in stage-wise analysis (with or without weighting) and then forward these means to GWAS or GS analysis, often without any weighting. In Chapter 4 weighted stage-wise analysis versus unweighted stage-wise analysis are compared for GWAS and GS using phenotypic and genotypic maize data. Fully-efficient and a diagonal weighting are used. Results show that weighting is preferred over unweighted analysis for both GS and GWAS. In conclusion, stage-wise analysis is a suitable approach for practical analysis of MET, GS and GWAS analysis. Single-stage and two-stage analysis of MET yield very similar results. Stage-wise analysis can be nearly as efficient as single-stage analysis when using optimal weighting, i.e., fully-efficient weighting. Spatial variation and within-trial variance heterogeneity are common in MET data. This study illustrated that both can be resolved simultaneously using a weighting approach for the variance heterogeneity and spatial modeling for the spatial variation. Finally beside application of weighting in the analysis of phenotypic MET data, it is recommended to use weighting in the actual GS and GWAS analysis stage.