Browsing by Person "Bohner, Anne"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Membrane transport and long-distance translocation of urea in Arabidopsis thaliana(2011) Bohner, Anne; von Wirén, NicolausUrea is a soil nitrogen (N) form available to plant roots and a secondary N metabolite liberated in plant cells by protein degradation, especially during senescence. Despite the fact that urea also represents the most widespread form in N fertilizers used in agricultural plant production, membrane transporters that might contribute to urea uptake in plant roots or urea retranslocation in senescent leaves have so far been characterized only in heterologous systems. The first part of the thesis investigated a role of the H+/urea cotransporter AtDUR3 in N nutrition of Arabidopsis thaliana plants. T-DNA insertion lines with a defective expression in AtDUR3 showed impaired growth on urea as a sole nitrogen source. In transgenic lines expressing an AtDUR3-promoter-GFP construct, promoter activity was upregulated under N deficiency and localized to the rhizodermis, including root hairs, as well as to the cortex in more basal root zones. The AtDUR3 protein accumulated in plasma membrane-enriched protein fractions, and AtDUR3 gene expression in N-deficient roots was repressed by ammonium and nitrate but induced after supply of urea. Higher urea accumulation in roots of wild-type plants relative to the T-DNA insertion lines confirmed that urea was the transported substrate of AtDUR3. Influx of 15N-labeled urea allowed the calculation of an affinity constant of 4 µM. These results indicated that AtDUR3 is the major transporter for high-affinity urea uptake in Arabidopsis roots and suggested that the high substrate affinity of AtDUR3 reflects an adaptation to the low urea levels usually found in unfertilized soils. A physiological function of urea and its transporters in leaves was investigated in the second part of the thesis. Currently it is unclear whether transport and metabolism of urea might limit the overall retranslocation of N during senescence. AtDUR3 transcript levels were only slightly de-repressed under N starvation, but strongly increased in senescent leaves. Urea concentrations in leaf samples of different plant and leaf age showed a strong increase after plants turned into generative growth. In parallel, mRNA as much as the protein abundance of AtDUR3 increased with leaf age. The analysis of leaf petiole exudates revealed that urea was indeed a translocated N form and urea-N represented approx. 13% of the total amino acid-N irrespective of the N status of the plant. Urea concentrations determined in apoplastic wash fluids supported a role of AtDUR3 in urea retrieval from the leaf apoplast, and transgenic AtDUR3-promoter-GUS lines indicated a localization of AtDUR3 promoter activity in the vasculature of old leaves. Thus, AtDUR3 might keep internal urea in the cytosol by urea retrieval from the apoplast, allowing urea to be transported to the vascular bundle, where it is either passively loaded to the phloem or converted into amino acids for long-distance N translocation. A strong daytime-dependent phenotype with shorter leaf petioles of an Arabidopsis line overexpressing AtDUR3 led to an in silico analysis of the AtDUR3 promoter sequence revealing that salicylic acid (SA) appears to induce AtDUR3 gene expression in senescent leaves. SA is well known for its involvement in the initiation of senescence. A strongly enhanced uptake capacity for 15N-labeled urea in N-sufficient Arabidopsis roots after SA pretreatment indicated that SA might be able to mimic N-deficiency conditions, paving the way to the possibility that SA builds a regulatory link between developmental and N deficiency-induced senescence.