Browsing by Person "Bindrich, Ute"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Analysis of protein-network formation of different vegetable proteins during emulsification to produce solid fat substitutes(2021) Baune, Marie-Christin; Schroeder, Sarah; Witte, Franziska; Heinz, Volker; Bindrich, Ute; Weiss, Jochen; Terjung, NinoPlant-based emulsion gels can be used as solid animal fat substitutes for vegan sausages. For this reason, commercially available protein isolates with different amino acid profiles from pea, soy and potato (Pea-1, Pea-2, Soy, Potato) have been tested for their ability to form shape stable emulsions gels at neutral pH and upon heating to 72 °C. In order to obtain emulsion gels that are as solid as possible, the protein concentrations in the continuous phase (CPC, 8.0–11.5% (w/w)) and the oil mass fractions (65–80%) were varied. For leguminous proteins, a positive correlation of both parameters on emulsion rigidity was shown, indicating that both, interfacial and protein–protein interactions, are involved in structure reinforcement. Firmness increased with increasing content in cysteine (Pea-1 < Pea-2 < Soy) and the interactions were of electrostatic, hydrophobic and hydrophilic nature. Potato emulsion rigidity was independent of CPC and oil content. The emulsions showed a much higher degree in crosslinking, and very low charge density. Temperature-sweep analysis and CLSM revealed that Potato protein gelled as consequence to low temperature stability. Hence, the structure reinforcement in Potato emulsions mainly contributed to the protein network, with 70% oil and CPC 11.5% forming a hybrid gel with highest firmness. However, gelling of Potato protein also resulted in interfacial adsorption of protein aggregates and reduced interfacial stability with increasing CPC. This was demonstrated in the amount of extractable fat which was 2.0 and 0.6% for Pea-1 and 2 emulsions, 6.4% for Soy and 34.4% of total fat for Potato emulsions.Publication Effect of frozen to fresh meat ratio in minced pork on its quality(2023) Tomasevic, Igor; Witte, Franziska; Kühling, Rike Elisabeth; Berger, Lisa M.; Gibis, Monika; Weiss, Jochen; Röser, Anja; Upmann, Matthias; Joeres, Eike; Juadjur, Andreas; Bindrich, Ute; Heinz, Volker; Terjung, NinoThe meat industry is typically using a mixture of fresh and frozen meat batters for minced meat production. Our goal was to find the exact threshold for fresh to frozen meat ratio capable of controlling the meat temperature during processing, but without having an adverse effect on the sensory quality of minced pork. To achieve this, the percentage of frozen meat used for the minced pork production was increased from 0% (control) to 50% (maximum) in 10% increments. To keep the minced meat temperature in control and make the processing resistant to fat smearing, the addition of 30% of frozen meat to the meat batter is sufficient. The soluble protein content, instrumental cutting force, and the sensory perceived firmness, juiciness, and inner cohesion were not affected by the addition of frozen meat. However, it has contributed to a significant increase of the drip loss and the amount of non-intact cells (ANIC). With the addition of frozen meat into the minced pork, the compliance to ANIC regulation by the German regulatory authorities is technologically (practically) almost impossible.Publication Influence of finely chopped meat addition on quality parameters of minced meat(2022) Witte, Franziska; Sawas, Erik; Berger, Lisa M.; Gibis, Monika; Weiss, Jochen; Röser, Anja; Upmann, Matthias; Joeres, Eike; Juadjur, Andreas; Bindrich, Ute; Heinz, Volker; Terjung, NinoLarger processing equipment to produce minced meat could affect its structure due to intensive processing and a high energy intake in the meat mass. To assess if this would result in alterations in the minced meat quality, finely chopped meat (FCM) was added in different concentrations (15, 30, 45, 60, 75, 90, and 100%) to minced meat and quality parameters were analyzed. FCM was used to simulate different intensity of an unintended destruction of meat cells due to various processes. The amount of non-intact cells (ANIC) was determined histologically and furthermore, soluble protein content, water holding capacity, mechanical and sensory texture, and scanning electron and confocal laser scanning microscopy was applied to analyze the meat structure and quality. ANIC indicated that even adding 15% FCM was statistically (p < 0.05) distinguishable from 100% minced meat and 30% FCM had already 50 Vol.-% ANIC. In contrast, the addition of 15% or 30% FCM did not result in significant differences in drip loss of raw and cooked meat as well as mechanical and sensory texture analysis. This study showed that intensive processing might be detectable via ANIC, but that the minced meat quality was not affected.