Publikationsfonds der Universität Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16624
Über den Publikationsfonds der Universität Hohenheim erhalten Wissenschaftlerinnen und Wissenschaftler der Universität finanzielle Unterstützung bei der Veröffentlichung ihrer Forschungsergebnisse im Open Access. Gefördert werden Zeitschriftenartikel in Fully-Open-Access-Zeitschriften (Gold-OA) und hybriden Subskriptionszeitschriften (Hybrid-OA) sowie Monografien. Autorinnen und Autoren können online einen Förderantrag zur Finanzierungsbeteiligung ihrer Publikation stellen.
- Publikationsfonds: https://kim.uni-hohenheim.de/publikationsfonds
- Förderantrag: https://kim.uni-hohenheim.de/foerderantrag
Browse
Browsing Publikationsfonds der Universität Hohenheim by Person "Bahrs, Enno"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Digital maturity of administration entities in a state-led food certification system using the example of Baden-Württemberg(2025) Francksen, Sabrina; Ghaziani, Shahin; Bahrs, Enno; Okpala, Charles Odilichukwu R.Digital transformation is increasingly relevant in food certification systems, improving processes, coordination, and data accessibility. In state-led certification systems, public entities hold a political mandate to promote digital transformation, yet little is known about digital maturity in these systems or how to assess it. This study assesses the digital maturity of a state-led food certification system in Baden-Württemberg, Germany, focusing on private sector stakeholders involved in its administration. Additionally, it examines potential measures that the governing public entity can take and evaluates the suitability of the methods used. A total of 25 out of 43 organisations were surveyed using the Digital Maturity Assessment (DMA) framework validated for the European Union (EU). Six dimensions were analysed: Digital Business Strategy, Digital Readiness, Human-Centric Digitalisation, Data Management, Automation and Artificial Intelligence, and Green Digitalisation. Data Management and Human-Centric Digitalisation were the most developed, highlighting strong data governance and workforce engagement. Automation and Artificial Intelligence were ranked lowest, reflecting minimal adoption but also indicating that not all dimensions might be of the same relevance for the variety of organisations. The variability in scores and organisation-specific relevance underscores the European DMA framework’s value, particularly due to its subsequent tailored consultation process and its integration into EU policy.Publication How effective and efficient is the generation of nature-based carbon removal quantified according to the regulation on carbon removal and carbon farming certification? An evaluation based on the example of a hypothetical agroforestry system in Baden-Württemberg(2025) Geier, Cecilia Roxanne; Angenendt, Elisabeth; Bahrs, Enno; Sponagel, ChristianNature-based carbon removal (CR) could play a key role in achieving climate neutrality but it does face quantification challenges. This study evaluates the effectiveness and efficiency of CR quantification under the Carbon Removals and Carbon Farming (CRCF) Regulation, using Baden-Württemberg (Germany) as a case study. We designed a hypothetical agroforestry system for valuable timber production compliant with the CRCF requirements, modelling potential GHG emission reductions and the benefit-potential ratio (share of the CRCF-compliant net CR benefit within the total GHG emission mitigation potential). The results revealed a significant shortfall between the total GHG mitigation potential (350 kt CO2eq) and the actual net CR benefit (205 kt CO2eq), representing only 5 % of BW’s agricultural emissions. The benefit-potential ratio was at most 59 %, with abatement costs ranging from €59 to €153 t CO2eq-1. Conservative estimates to improve reliability further lowered the ratio to 24 %, pushing costs to €244 t CO2eq-1. While agroforestry does manifest regional CR generation potential, it is unlikely to contribute significantly to large-scale CR under the current CRCF framework, as both flaws within its quantification base and the inherent properties of nature-based CR limit its effectiveness. Although transferability is restricted by focusing on valuable timber production in BW, our results highlighted the need for harmonized emission factors, system boundary definitions (particularly indirect land use change), and a clear distinction between CR (e.g., from carbon sequestration in soils) and reduced soil emissions. We advocate balancing the use of agroforestry with more durable CR strategies and imposing caps on nature-based CR contributions to ensure robust climate action.Publication Mineral-ecological cropping systems mitigate biodiversity-productivity trade-offs of the organic vs. conventional farming dichotomy(2024) Kasten, Marit Kinga; Witte, Felix; Sponagel, Christian; Bahrs, Enno; Köhler, Thomas; Morinière, Jérôme; Grass, Ingo; Kasten, Marit Kinga; Ecology of Tropical Agricultural Systems, University of Hohenheim, Garbenstrasse 13, Stuttgart, Germany; Witte, Felix; Department of Farm Management, University of Hohenheim, Schwerzstrasse 44, Stuttgart, Germany; Sponagel, Christian; Department of Farm Management, University of Hohenheim, Schwerzstrasse 44, Stuttgart, Germany; Bahrs, Enno; Department of Farm Management, University of Hohenheim, Schwerzstrasse 44, Stuttgart, Germany; Köhler, Thomas; Ecology of Tropical Agricultural Systems, University of Hohenheim, Garbenstrasse 13, Stuttgart, Germany; Morinière, Jérôme; AIM – Advanced Identification Methods GmbH, Niemeyerstr.1, Leipzig, Germany; Grass, Ingo; Ecology of Tropical Agricultural Systems, University of Hohenheim, Garbenstrasse 13, Stuttgart, GermanyConventional agriculture significantly reduces biodiversity, while organic farming promotes it, but often yields half as much. Addressing this biodiversity-productivity trade-off is crucial for future agriculture. Mineral-ecological cropping systems (MECS) have been suggested as an alternative, blending organic and conventional methods by avoiding chemical-synthetic pesticides and using mineral fertilizers. In a German experiment with 168 parcels, we compared MECS, conventional, and organic systems in terms of ecological and economic performance. Arthropod diversity was measured through standardized species collections and DNA-metabarcoding. Productivity was assessed via yields and economic profits. MECS showed similar arthropod diversity to other farming systems, achieved 90% of conventional crop yields, and produced 1.8 times of the organic yield. Profits from MECS were on average 37% higher than the conventional system with a short wheat-maize-soy crop rotation. Further farm-level studies are needed, but MECS could be a reasonable alternative to both organic and conventional farming and can mitigate biodiversity-productivity trade-offs.