Institut für Landschafts- und Pflanzenökologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/11
Browse
Browsing Institut für Landschafts- und Pflanzenökologie by Person "Berauer, Bernd J."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Constant hydraulic supply and ABA dynamics facilitate the trade-offs in water and carbon(2023) Abdalla, Mohanned; Schweiger, Andreas H.; Berauer, Bernd J.; McAdam, Scott A. M.; Ahmed, Mutez AliCarbon-water trade-offs in plants are adjusted through stomatal regulation. Stomatal opening enables carbon uptake and plant growth, whereas plants circumvent drought by closing stomata. The specific effects of leaf position and age on stomatal behavior remain largely unknown, especially under edaphic and atmospheric drought. Here, we compared stomatal conductance (gs) across the canopy of tomato during soil drying. We measured gas exchange, foliage ABA level and soil-plant hydraulics under increasing vapor pressure deficit (VPD). Our results indicate a strong effect of canopy position on stomatal behavior, especially under hydrated soil conditions and relatively low VPD. In wet soil (soil water potential > -50 kPa), upper canopy leaves had the highest gs (0.727 ± 0.154 mol m-2 s-1) and assimilation rate (A; 23.4 ± 3.9 µmol m-2 s-1) compared to the leaves at a medium height of the canopy (gs: 0.159 ± 0.060 mol m2 s-1; A: 15.9 ± 3.8 µmol m-2 s-1). Under increasing VPD (from 1.8 to 2.6 kPa), gs, A and transpiration were initially impacted by leaf position rather than leaf age. However, under high VPD (2.6 kPa), age effect outweighed position effect. The soil-leaf hydraulic conductance was similar in all leaves. Foliage ABA levels increased with rising VPD in mature leaves at medium height (217.56 ± 85 ng g-1 FW) compared to upper canopy leaves (85.36 ± 34 ng g-1 FW). Under soil drought (< -50 kPa), stomata closed in all leaves resulting in no differences in gs across the canopy. We conclude that constant hydraulic supply and ABA dynamics facilitate preferential stomatal behavior and carbon-water trade-offs across the canopy. These findings are fundamental in understanding variations within the canopy, which helps in engineering future crops, especially in the face of climate change.Publication Differences in mucilage properties and stomatal sensitivity of locally adapted Zea mays in relation with precipitation seasonality and vapour pressure deficit regime of their native environment(2023) Berauer, Bernd J.; Akale, Asegidew; Schweiger, Andreas H.; Knott, Mathilde; Diehl, Dörte; Wolf, Marc‐Philip; Sawers, Ruairidh J. H.; Ahmed, Mutez A.With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts—both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])—plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties—namely, viscosity, contact angle, and surface tension—differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R2 = .88, p < .01) and mucilage viscosity (R2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre‐adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre‐adaptations to drought to ultimately increase crop yield resistance under future climatic variability.Publication Increases in functional diversity of mountain plant communities is mainly driven by species turnover under climate change(2023) Schuchardt, Max A.; Berauer, Bernd J.; Duc, Anh Le; Ingrisch, Johannes; Niu, Yujie; Bahn, Michael; Jentsch, AnkeWarming in mountain regions is projected to be three times faster than the global average. Pronounced climate change will likely lead to species reshuffling in mountain plant communities and consequently change ecosystem resilience and functioning. Yet, little is known about the role of inter‐ versus intraspecific changes of plant traits and their consequences for functional richness and evenness of mountain plant communities under climate change. We performed a downslope translocation experiment of intact plant‐soil mesocosms from an alpine pasture and a subalpine grassland in the Swiss and Austrian Alps to simulate an abrupt shift in climate and removal of dispersal barriers. Translocated plant communities experienced warmer and dryer climatic conditions. We found a considerable shift from resource conservative to resource acquisitive leaf‐economy in the two climate change scenarios. However, shifts in leaf‐economy were mainly attributable to species turnover, namely colonization by novel lowland species with trait expressions for a wider range of resource use. We also found an increase in vegetative height of the warmed and drought‐affected alpine plant community, while trait plasticity to warming and drought was limited to few graminoid species of the subalpine plant community. Our results highlight the contrast between the strong competitive potential of novel lowland species in quickly occupying available niche space and native species' lack of both the intraspecific trait variability and the plant functional trait expressions needed to increase functional richness under warming and drought. This is particularly important for the trailing range of many mountain species (i.e. subalpine zone) where upward moving lowland species are becoming more abundant and abiotic climate stressors are likely to become more frequent in the near future. Our study emphasizes mountain plant communities' vulnerability to novel climates and biotic interactions under climate change and highlights graminoid species as potential winners of a warmer and dryer future. Keywords: alpine grassland, functional diversity, invasion, species turnover, traitspace, translocationPublication The need to decipher plant drought stress along the soil-plant-atmosphere continuum(2023) Schweiger, Andreas H.; Zimmermann, Telse; Poll, Christian; Marhan, Sven; Leyrer, Vinzent; Berauer, Bernd J.Lacking comparability among rainfall manipulation studies is still a major limiting factor for generalizations in ecological climate change impact research. A common framework for studying ecological drought effects is urgently needed to foster advances in ecological understanding the effects of drought. In this study, we argue, that the soil–plant–atmosphere‐continuum (SPAC), describing the flow of water from the soil through the plant to the atmosphere, can serve as a holistic concept of drought in rainfall manipulation experiments which allows for the reconciliation experimental drought ecology. Using experimental data, we show that investigations of leaf water potential in combination with edaphic and atmospheric drought – as the three main components of the SPAC – are key to understand the effect of drought on plants. Based on a systematic literature survey, we show that especially plant and atmospheric based drought quantifications are strongly underrepresented and integrative assessments of all three components are almost absent in current experimental literature. Based on our observations we argue, that studying dynamics of plant water status in the framework of the SPAC can foster comparability of different studies conducted in different ecosystems and with different plant species and can facilitate extrapolation to other systems, species or future climates.